See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is ... Read More
In the study, we present an efficient absorbing boundary domain technique whose main application is the 3D finite element (FE) modelling of the so-called controlled-source electromagnetic (CSEM) data, collected for the geophysical exploration. The developed technique is based on the real ... Read More
Seismic evaluation of existing dams is a major issue that has been even more highlighted by the recent events in Italy. In this regard, researchers and engineers need a reliable and quick tool to assess the complex behaviour of the structure – fluid – soil system. In this paper the soil ... Read More
Sediment transport in shallow water is of concern in many hydro-ecological problems. Erosion or sedimentation processes are not only relevant in perennial systems as rivers, lakes, reservoirs and coastal regions, but also in ephemeral phenomena like gullies, inundations and floods. ... Read More
In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional ... Read More
A similarity solution to Taylor's paint scraper problem for the flow of a non-Newtonian power-law fluid is presented. A shooting method numerical solution agrees with the results found for Newtonian fluids and is able to capture both shear-thinning and shear-thickening fluids. ... Read More
The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by ... Read More
The block caving mine is considered by the mining industry as one of the natural replacements of the current open cut mines in the near future. The block caving technique is based on the extraction of small broken rocks, created by blasted initially large solid rocks, and the fracture of ... Read More
Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they ... Read More
For the numerical solving of the equations, Comsol has been applied. Simulations have been modeled in 2D Cartesian, in cylindrical coordinate system and in a “mantle-like” cylindrical-shell. Mantle dynamics is controlled by the Rayleigh number (Ra), which is the ratio of the buoyancy ... Read More
