See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This report addresses design of a PCB intended for use as a busbar integrated with multiple DC-link (rail) capacitors in a high power inverter. The geometry and current ratings are typical of a 50 kW unit operating at 60kHz in an intermittent mode. First, circuit aspects are analyzed. ... Read More
This paper explores surface charge modulated ionic conductance of closed solid-state nanopores for explaining significant nonlinear length dependent variation in ionic current in such nanopore biosensors with a view to design improved sensors without increasing fabrication cost for ... Read More
In this research work, we developed a virtual model to examine the electrical conductivity of multilayered thin films when positioned above a single layer and multilayers of graphene, and flexible polyethylene terephthalate (PET) substrate. Additional structured thin films were ... Read More
This paper describes the use of COMSOL Multiphysics® during the design of a vented box loudspeaker. Templates have been created to model the different needs of a complete design. Based upon those templates a box has been prototyped, measured and confronted to simulation. The cabinet may ... Read More
We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good ... Read More
Accurate and efficient computation of electrical parameters for different conducting bodies represents an essential part of spacecraft modern integrated circuits. In this paper, we will illustrate modeling of inhomogeneous quasi-TEM shielded rectangular, cylindrical, and triangular ... Read More
In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is ... Read More
A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10 ... Read More
Many materials require functionally graded cellular microstructures whose porosity is engineered to meet specific requirements of diverse applications. It has been shown in previous work that the bubble growth rate of a polymeric foam can be influenced by the surrounding acoustic ... Read More
In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed ... Read More