See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Waterflooding and steam-flooding are used worldwide for EOR. Recently, CO2-flooding has attracted global attention as a means of EOR as well as for carbon capture and sequestration. These processes cause significant changes over time in the fluid composition of oil reservoirs. This paper ... Read More
Nano and pico-litre sessile droplet are of large interest in many areas including pharmaceutical and biomedical applications. In particularly it can be used for drug delivery, protein testing or to control nucleation in confined environment. Industrial and research use of such methods ... Read More
In optogenetics research it is highly desirable to have a method that can deliver light and excite individual neurons in the brain in a controllable and single cell manner. Working toward this goal, we are developing liquid microlenses with active electronics that enable both focusing ... Read More
Mid-infrared, which interacts with most of the chemicals and creates spectra with functional group and fingerprint information, is widely used as a chemical sensing method for a variety of applications, including biomedical testing, quality control in electronics manufacturing and food ... Read More
Based on solid oxide fuel cell (SOFC) technology, the solid oxide electrolysis cell (SOEC) offers an interesting solution for mass hydrogen production. This study proposes a multiphysics model to predict the SOEC behavior. A global approach and several electrochemical kinetic equations ... Read More
微波辅助生物柴油生产越来越受到了人们的关注,但是,微波的不均匀加热也影响了微波辅助生物柴油的大规模生产。研究表明,连续流微波加热器可以有效地解决微波辅助生物柴油的批量生产问题[1],螺旋推进器也可以改善加热均匀性,于是仿真带有螺旋推进器的连续流微波加热器的生物柴油生产过程,有利于优化连续流微波加热器的设计,对提高微波辅助生物柴油生产效率有重要的意义。 本文使用了电磁场、旋转机械流、流体传热和化学反应接口。电磁场中的介电系数是关于温度和物质浓度的函数,流体的热参量由流体各组分的质量比等效所得[2]。计算采用步进求解的方法,先在频域求解电磁场,所得的耗散功率代入流体传热 ... Read More
Spring-supported thrust bearings are used in huge rotor dynamic machines, generally to support the shafts from the biggest hydropower generators. Any attempt of modifying yhis type of thrust bearing implies huge investment and is associated with some risks. The goal of the present work ... Read More
The micro-nanometer sized droplets have tremendous applications in bio-diagnostics, polymerization processes etc. In this work, we numerically investigate the droplet formation process of silicone oil in aqueous solution in a MFF device. A conservative level-set method is adopted to ... Read More
Petroleum reservoir simulation is a process of modeling the complex physical phenomena inside a reservoir. This study presents an application of an analytical based numerical scheme so called the Boundary Element Method (DRBEM). It is proven to be able to provide a computationally ... Read More
In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal ... Read More