See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This paper presents an ongoing effort, motivated by developing self-contained sensors for structural health monitoring of inflatable structures, to model the process of extracting useable electrical power from the mechanical vibrations of thin, prestressed membrane structures. Energy ... Read More
FEM (Finite Element Method) modelling software such as COMSOL Multiphysics® can be a powerful tool for modelling the behavior and response of piezoelectric materials and devices [1]. Devices based on piezoelectric crystals are particularly well suited, because the polarization magnitude ... Read More
The onshore wind turbine industry must overcome many technical, commercial, and environmental difficulties. A significant element for planning consent is operational noise. Acoustic limits are strictly enforced and can lead to near-neighbour complaints as well as contractual disputes. ... Read More
AlGaN/GaN heterostructures are unique because the 2DEG at the interface is created by the difference in polarization properties of the AlGaN and the GaN layers; not due to intentional doping. In this work, a 3D model of an electrostatically actuated micro cantilever has been developed ... Read More
Microelectromechanical systems (MEMS) are becoming more prevalent in today’s space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS, the Multiple Mirror ... Read More
Vibrating mechanical tank components, such as quartz crystals and surface acoustic wave (SAW) resonators with Q’s in the range of 10e3–10e6, are widely used to implement high-Q oscillators and band pass filters in the radio frequency (RF) and intermediate frequency (IF) stages of ... Read More
The main mechanisms of acoustic attenuation in a bundle of fibres typical of lightweight fibrous porous materials are the dynamic viscous drag forces on the surface of the fibres, and the thermal heat transfer between the solid fibres and the surrounding fluid. Microstructure models ... Read More
The shear mode of film bulk acoustic resonators (FBARs) is preferred to the longitudinal mode owing to its lower acoustic losses in a liquid. However in addition to mass loading, the resonance is also affected by temperature and liquid viscosity. These two parameters can either be sensed ... Read More
Microarrays are extensively used in modern biology as tools of multiplexed, high throughput analysis to study thousands of genes and their expression inside cells at once [1]. The basic principle of a microarray is quantitative detection of fluorophore tagged DNA. Use of this method ... Read More
The aim of this paper is to determine the location of the “sweet spot” for a selected cricket bat commonly used in the sport. Knowledge of the “sweet spot” is important in delivering a shot that utilizes the optimal zone of the bat that corresponds to the maximum power of the stroke. A ... Read More