See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This study deals with a numerical investigation of the melting process of a PCM in a rectangular enclosure differentially heated. COMSOL Multiphysics is used in order to numerically solve Navier-Stokes and energy equations in the considered system. Adopting an enthalpy formulation, one ... Read More
Gecko foots have inspired researchers to develop designs that can help robots to tread vertically oriented surface. These nanobots find many applications as they can perform a lot of operations more efficiently and also lower the cost of such operations. These can be employed in various ... Read More
A comparison of discrete fracture and explicit fracture models for single-phase flow in fractured porous media using COMSOL Multiphysics® software is presented to understand the contribution of each individual fracture to fluid flow, and the exchange between fracture and surrounding ... Read More
This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by ... Read More
The results of modeling of thermal fields, stresses, deformations and displacements in formation of an additive structure from structural low alloy steel for welding 09G2S on a substrate are presented. An interdisciplinary research computational package COMSOL Multiphysics® was used for ... Read More
A two dimensional transient analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. Thermal and optical nonlinearity is induced ... Read More
The use of microwaves for heating purposes of dielectric materials is encountered in many industrial applications (food processing, chemistry, material engineering and medical applications). In most of these thermal applications, the prediction of the temperature evolution within the ... Read More
Diffuse Optical Tomography (DOT) uses Near Infra-red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high ... Read More
The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there ... Read More
Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process ... Read More