See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This talk is for users of the COMSOL Multiphysics® software who, like the present author, are relative newcomers to numerical simulation but have a strong grounding in Hydrodynamics or related areas of Mathematical Physics. As part of a multi-year plan to develop proficiency in Equation ... Read More
The Laser Metal Deposition process (LMD) is a rapid free form fabrication method which can be used to manufacture new near net shape metallic components, to repair used ones or to add functional parts on existing ones. This process is composed by multiple gas streams flowing inside a ... Read More
Friction stir welding (FSW) is a revolutionary technique for joining high-strength materials, offering superior mechanical properties compared to traditional fusion welding methods. However, achieving optimal surface quality in FSW of Inconel 718 is challenging due to the material's ... Read More
A drying chamber for dehydration purposes is simulated; we model a chamber chimney system coupled to a solar collector as the heat source. Using both, the Heat Transfer Module and CFD Module of COMSOL Multiphysics® software in a 2D geometry we simulate the velocity and temperature field ... Read More
High power consumption chips have already become a major challenge for modern processors causing low thermal performances. Existing thermal solutions are not able to solve these high temperature issues efficiently. Two-phase cooling devices such as heat pipes and vapor chambers have ... Read More
This paper presents and discusses the first phase results of a wide ranging project concerning the study and prediction of the efficiency and energy performances of natural ventilation systems existing inside historic buildings. The air flow patterns, air temperature and air velocity ... Read More
We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode ... Read More
Our current research is focused on thermal Marangoni instabilities in sessile ethanol drops which develop spontaneously during evaporation. Our current problem for numerical model is 3D unsteady with moving interface of a sessile drop under forced evaporation and showing internal flow ... Read More
Microfluidics-based mixing has been widely used in various areas such as chemical engineering, biomedical engineering and materials science. The micromixer can be strategies into two categories as passive and active method depending on the mixing principle. Magnetic mixing integrated ... Read More
Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville from 1970-1980, and then joined the MIT Department of Electrical Engineering and Computer Science faculty in 1980. He works in the ... Read More
