See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary ... Read More
Effective suspension and settling are critical for controlling biomass retention in a biogas digester. This paper developed a Computational Fluid Dynamics (CFD) model to simulate the hydrodynamic characteristics of multiphase flow in biogas digester. This is carried out by using COMSOL ... Read More
The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More
Droplets and their interaction with solid substrates are ubiquitous in nature. Such interactions also have commercial significance, as they are observed in many important applications. Impingement dynamics of aqueous droplets with solid substrates are largely understood due to extensive ... Read More
Thermal enhanced oil recovery methods form the majority of the enhanced oil recovery projects worldwide. Among the thermal methods, steam injection is the most effective and most applied process in petroleum industry. The main mechanism of the steam injection method is the reduction of ... Read More
Mathematical description of microwave drying requires the solution of two different physics: electromagnetics in the microwave oven cavity and food material and, transport process (mass, momentum and heat transport) in the food material. Maxwell’s equations for electromagnetics were ... Read More
The paper presents and compares two models for simulating magneto-hydrodynamic flow of RedOx electrolyte in a conduit patterned with circular pillars. The first model solves the coupled Nernst-Planck and Navier-Stokes equations subjected to Butler-Volmer electrode kinetics and provides ... Read More
In the modern food industry one of the most important problems to face is to preserve products from deterioration: a widely used solution is the convective foods drying. Drying is based on a simultaneous transfer of both heat and water that takes place when dry and warm air flows around ... Read More
Various types of equation system formulations for modeling two-phase flow in porous media using the finite element method have been investigated. These allow for equation manipulation such that the main differences between the formulations are the dependent variables that are solved ... Read More
Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, ... Read More
