See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This work demonstrated the importance and feasibility of experimental image to simulation workflow. The workflow is successfully applied to a food processing study, where multiphysics and multiscale modeling based on 3D experimental image reconstruction contributes to the preservation of ... Read More
The ongoing trend towards miniaturization, higher integration as well as cost efficiency will make it necessary to investigate a new assembly method for micro components. In this paper, a novel method of fluidic-based micro assembly is presented. A self-assembly effect which is caused by ... Read More
In biotechnology and medicine, cells are frequently grown on scaffolds with a three-dimensional channel structure. The oxygen and nutrient supply of the cells is realized by a medium flowing through the channels of the scaffolds. However, it is often difficult to obtain a confluent ... Read More
We present a study of an optofluidic biosensor. The sensor operates in a transmission mode wherein detection is based on a shift in the transmission spectrum caused by the contrast in refractive index between the carrier fluid and the target biomaterial. We study the behavior of the ... Read More
The present work introduces a new methodology, based on COMSOL Multiphysics® Application Builder, to account for the “beam trapping” effect in multiphysical modelling of laser welding. Incident intensities involved in laser welding processes are high enough to induce material ... Read More
Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is biomedical applications for micromaching technologies. One application of interest to the biomedical industry is the development of ... Read More
Parametric and topology optimization approaches are widely used techniques for performance improvement of components in terms of various objectives. Especially topology optimization often leads to complex geometries that are difficult or impossible to produce by conventional ... Read More
In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed strategy in this study involved several steps: (a) development a computational model for FACVD process capable to describe and obtain with ... Read More
Interest in the production of hydrogen from hydrocarbons has grown significantly recently. In order to achieve high surface to volume ratio with reasonable pressure drop, monolithic reactors are used. The goal of this work is to develop a two-phase (gas & solid) transient catalytic ... Read More
The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its ... Read More
