See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Spontaneous emission -- an electron in an excited state of an emitter spontaneously decays to another state with lower energy -- plays an important role in determining the performance of light-emitting diodes, fluorescent dyes, colorants, solar cells, etc. The efficiency of spontaneous ... Read More
Common mode chokes are good EMI filters in electronic power systems [1]. For such devices, values for their impedance are critical to their performances as noise filters. In this study, a two-step finite element approach is employed to study the impedance variations of a ferrite-core ... Read More
Electromagnetic metamaterials present exotic and unusual properties hardly to be found in nature with many potential applications. They are usually built by distributing small resonant structures in periodical lattices. If the structure has chiral symmetry, the medium is called chiral ... Read More
This paper presents a simulation model of a rotary damper filled with a magnetorheological fluid (MRF). The most important characteristic of the MRF is the variable viscosity, which can be controlled by an external magnetic field. In the simulation model, the fluid is described as a ... Read More
Currently in the semiconductor industry more than 80% of silicon crystal are grown by the Czochralski (Cz) method. In this method, fused silica (SiO2) crucibles and graphite heaters are used inside furnaces. The surface of the crucibles, which are in contact with the molten silicon, is ... Read More
Large-area, light-weight electromagnetic protection (EP) structures are needed to protect sensitive microwave sensors and communications systems from high-power microwave (HPM) and electromagnetic pulse (EMP) threats. This paper presents the use of COMSOL Multiphysics® for ... Read More
Undesirable shocks and vibrations are a noteworthy issue in numerous human exercises and domains. Therefore, various damping techniques are used to minimise vibrations, can be classified as active, Semi-active and passive damping. The development of semi-actively controlled ... Read More
Radome is a dielectric Electromagnetic (EM) transparent structure that encloses antenna and protects from various environmental conditions. The advancements in the field of high performance antennas increase the challenges in EM design and analysis of radome. The presence of radome ... Read More
Hyperloop is a future concept of mass transportation proposed by Elon Musk. It uses electromagnetic propulsion to accelerate a passenger or cargo pod through a low-pressure tube. HYPED, the University of Edinburgh’s Hyperloop Team has created a prototype that uses linear halbach arrays ... Read More
Real-time microstructure monitoring is important during the cooling process for hot-rolled strip steel production, as the microstructure formed determines the mechanical properties required by customers. The materials magnetic and electric properties, relative permeability and ... Read More
