See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
A novel type of tunable surface acoustic waves (SAW) filter based on 1D phononic crystal controlled by electric is field proposed. The tunability of proposed filter varied over a wide range: 1-20%. Basic idea is electrical controlled induced periodical domains in ferroelectric film based ... Read More
The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface ... Read More
Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine ... Read More
A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. ... Read More
Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied ... Read More
Zinc Oxide (ZnO) was chosen as the piezoelectric material. A multi – d31 mode cantilever design was used, with varying dimensions of cantilever, to form an array. The individual cantilevers can be either connected in series or in parallel to achieve different output characteristics. ... Read More
In high-speed digital design, strong electromagnetic coupling exists between adjacent transmission lines. This manifests itself in the form of crosstalk voltage induced on either line. Crosstalk is modeled in terms of capacitance and inductance matrices which are extracted using COMSOL ... Read More
The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More
High power Lower-Hybrid RF waves injected at in a Tokamak plasma can strongly modify the edge plasma. This is caused by ponderomotive forces pushing charged particles in an inhomogeneous oscillating electromagnetic field towards weaker field areas. On the Alcator C-Mod Tokamak, edge ... Read More
We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good ... Read More
