See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes. Read More
Ubiquitous, unobtrusive wearable computing has tremendous potential for impacting many applications including medical, personal entertainment and surveillance. Advances in the underlying technology have allowed for consistent reduction in the size and weight of emerging solutions, with ... Read More
A computationally efficient nonlinear constitutive model is developed for magnetostrictive materials using energy minimisation and discrete-energy averaging techniques. Computational time was considerably reduced through a local linearization of the material response and subsequent ... Read More
Dielectric elastomers are a promising group of smart materials, which finds application within many fields such as soft robotics, wave-energy harvesting, and loud speakers. A dielectric elastomer consists of a thin, stretchable polymer film sandwiched between two compliant electrodes. ... Read More
The objective of this research is to design a millimeter scale broadband energy harvester device through the use of a multi-cantilever beam approach with a non-linear geometry. In this research, we use COMSOL Multiphysics® software to design, simulate and analyze the voltage and power ... Read More
As the importance of nanoparticles is growing more and more, controlling and understanding the properties of nanoparticles became a focus of research. In this field Meyer at al. [1] are researching the GMR effect in granular gels to develop magnetoresistive sensors. The GMR in granular ... Read More
We have developed a small environmental chamber to expose a sample to adjustable climate conditions. This climate chamber will be used as sample environment for small-angle neutron scattering (SANS) experiments. SANS is a favorable measuring method, to explore structural changes on the ... Read More
Introduction: Medical devices undergo a series of evaluations in order to determine their performance and level of safety in a magnetic resonance (MR) environment. The standard of focus for this work is ASTM F2052-15 which measures the induced displacement of a device due to the ... Read More
Ion mobility spectrometry provides fast detection of very low concentrations of chemical substances. Simple instrumentation combined with high sensitivity and high selectivity are the advantages of this technique. One well established field of application is the detection of hazardous ... Read More
A simple proximity sensing circuit is made using magnets actuating reed switches; these switches are wired into a larger circuit that performs auxiliary functions. The success or failure of such systems is a function of their position. A simulation using COMSOL Multiphysics is conducted ... Read More
