See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Column Loudspeakers employ multiple drivers to get close to a radiating line source. A line source gives several acoustic advantages versus a point source, especially in highly reverberant environments. This property particularly has made column loudspeakers the preferred solution in ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
The XENON Dark Matter Experiment utilizes ultra-pure xenon (Xe) as a target for particle interaction in the effort to detect dark matter particles. To measure the purity of Xe, a gas purity monitor (GPM) is being developed which drifts electrons through Xe gas to detect impurities that ... Read More
Introduction Use of simulation software for solving realistic engineering problems has grown significantly in recent years due to the availability of less expensive but more powerful computers and development of user-friendly yet robust codes. From an educational perspective, students in ... Read More
The mesh is a key component in numerical simulations as it represents the spatial discretization of the model geometry. To accurately measure the variation of the unknowns, a relevant mesh should have a high density of degrees of freedom in regions where the norm of the gradient of the ... Read More
The mesh is a key component in numerical simulations as it represents the spatial discretization of the model geometry. To accurately measure the variation of the unknowns, a relevant mesh should have a high density of degrees of freedom in regions where the norm of the gradient of the ... Read More
This paper presents the investigation into the phenomena during batch reactor vessel mixing comparing agitation equipment; the Rushton turbine and the Marine propeller; in the production of bioethanol by yeast fermentation. The key factors addressed in selecting equipment were fluid ... Read More
The temperature distributions inside two packs (in-line and staggered) made of large cylindrical lithium iron phosphate cells (of 18 Ah nominal capacity) are analysed in this paper during a 90 A constant discharge current. The analysis of the battery packs temperature distributions is ... Read More
Air pollution caused by particulate matter (PM) is one of the most severe issues in urban environments. Urban green infrastructure (UGI), in particular green walls, have been proven to be capable of capturing PM via deposition on leaves. This phenomenon was assessed by numerical ... Read More