See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The Dirac equation is employed in particle physics and historically gave the first combined unification of quantum mechanics and relativity theory by introducing a four component wave function Ψn n=1…4. This wave function describes the behavior of fermion type particles. The effect of a ... Read More
Microwave heating is known for its efficiency and instantaneity. However, the non-uniformity of the microwave heating has limited the development of its application in industry. In order to solve this problem, a metal patch sticking to the turntable was proposed. During the heating ... Read More
Nanotechnology is rated as a key technology of the 21st century. In the field of nano-optics already at present, state-of-the-art scientific experiments and industrial applications exhibit nanometer to sub-nanometer design tolerances. This motivates the development and application of ... Read More
Lithium Niobate is a popular material for its non-liner optical properties, which is explored for various applications. Of many applications, use of these materials as photonic devices is indeed novel, in recent times. These photonic devices are set to revolutionise the silicon ... Read More
This paper will describe some applications of COMSOL Multiphysics to the analysis of Frequency Selective Surface (FSS) structures. Particular attention will be devoted to the possibility of designing a stealthy antenna using the FSS structure. In fact, since it possesses a dual filter ... Read More
Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale ... Read More
An implementation of the Electrical Impedance Tomography (EIT) forward problem in a generalist FEM package is presented. It fulfils the complete electrode model boundary conditions, combining current injection with contact impedance on a single boundary. Our implementation is benchmarked ... Read More
Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed ... Read More
We are developing a reflective metal-insulator-metal (MIM) filter with narrow band absorption. In the MIM structure, the interaction between subwavelength multilayer and visible light, and the resultant surface plasmon resonance (SPR) in specific illumination conditions must be ... Read More
Thermal ablation is rapidly becoming a standard of care for the treatment of atrial fibrillation (AF), a cardiac disorder characterized by irregular heart rhythm and estimated to impact more than 33 million people worldwide (Chugh et al. Circulation (2013)). AtriCure is a company that ... Read More
