See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as ... Read More
In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is ... Read More
This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a ... Read More
The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano ... Read More
Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on ... Read More
Ion-selective membranes can be used in lab-on-a-chip devices for various portable applications in this field. These devices can be used as concentrators for analytical chemistry and for micro-scale filtration. Here, a binary aqueous electrolyte solution in a microchannel has a potential ... Read More
The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy ... Read More
Cantilever beam-type transducers have been in great demand and explored widely in the recent years, typically in thin film form because of their sensor and actuator applications. The piezoelectric cantilever is the most preferred structure employed in technological applications. ... Read More
A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore ... Read More
In this paper, we develop and analyze a standard piezoacoustic Tonpilz-transducer model for underwater acoustics in Comsol by addressing the attendant piezoelectric and pressure acoustic multiphysics phenomena. Transducer properties that are studied and characterized are the center ... Read More
