See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Re-crystallisation of Ni-Mn-Ga Heusler alloys in a floating zone (FZ) optical furnace is a complex problem that depends not only on the compositions of the master alloy and a seed crystal but on the growth speed and evolution of the molten zone shape during the crystal growth process. We ... Read More
Convective drying of fruits and vegetables is a widely used preservation method and serves to reduce food waste, to make them available off-season and to reduce weight-related transport costs. However, the high energy consumption and impact of the process set-up and process settings on ... Read More
To achieve the goals of the Paris Agreement and limit global warming below 2 K compared to pre-industrial level, significant energy savings in all fields of industries will be required. One example of energy intensive processes in industrial fabrication is heat treatment. The applied ... Read More
A numerical model of laser welding process applied on highly optically reflective and thermally conductive materials such as copper has been developped. The latter considers multiphysical couplings of CFD, heat transfers and phase-field representation to account for topological ... Read More
High power lasers have a wide range of applications. The goal of this work is to analyze and further optimize a beam expander made of 2 lenses used with a kW class laser. The preliminary lens design is performed using an optical design software but its performance analysis, when used ... Read More
Inertial focusing of particles in a fluid flow is a physical effect induced by inertial forces already happening at the micro-fluidic scale. COMSOL Multiphysics® has provided an implementation of the drag and lift forces to compute this effect for a constant parallel-wall fluid channel ... Read More
Ongoing engineering design studies at Oak Ridge National Laboratory are exploring the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel. HFIR is a pressurized light water-cooled and moderated research ... Read More
Studying the properties of nuclei produced in various types of nuclear reactions at accelerator facilities is challenged by small production yields and short half-lives of isotopes of interest, therefore making high efficiency and fast timing essential parameters of the experimental ... Read More
The study of bentonite erosion mechanisms in fractures is a problem of maximum interest to understand the long-term performance of the engineered barrier in deep geological repositories of spent nuclear fuel. In this context, erosion due to shear by seeping water, sedimentation due to ... Read More
Induction brazing is a widely utilized joining process in various industries, offering efficient and localized heating for the assembly of diverse components. At Schneider Electric®, this process is used to assemble a silver piece on a copper piece. This work focuses on the advancements ... Read More
