See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... Read More
To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. ... Read More
With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been ... Read More
Conclusions about the influence of paper insulation on the electrical discharge initiation in mineral oil may be drawn on the basis of experimental studies. However, in some cases, these conclusions may be supported by electrical field analysis. Determination of maximum values of ... Read More
During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in ... Read More
Micro-power generators (MPGs) harvest and store small amounts of ambient energy. The motivation of this paper is to compare the MPG modeling and simulation results obtained from COMSOL Multiphysics® with those obtained using three other approaches: CoventorWare®, ANSYS® and ... Read More
The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano ... Read More
The finite-element method (FEM) (COMSOL RF Module) has been employed for modal analyses of porous silicon (PSi) waveguides composed of a guiding layer of low porosity (high refractive index) on a cladding layer with higher porosity (lower refractive index). These can be made by switching ... Read More
A specific issue in transformer modeling using the finite element method is the consideration of electric sheets or other laminated core materials which are used to reduce eddy currents. It would be impractical to explicitly model a large number of sheets as this would lead to a large ... Read More
Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh ... Read More
