See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The 3D unit cell model approach offers an efficient tool to analyze the influences of geometrical design (channel shape and arrangement, filter length, wall thickness) and filter material properties (permeability, soot loading characteristics) on the performance of ceramic particle ... Read More
Because of its high enthalpy of combustion, aluminum has been added to energetic materials. In this paper, a two dimension thermal model is developed and assessed to describe the interrelated processes of Aluminum particle oxidation by using the software COMSOL Multiphysics. The thermal ... Read More
This work enunciates the principles of SAW design from a physical perspective, examining the standard engineering modelling assumptions in some detail. An integral form analytical expression based on 2D elastic isotropic theory is validated against a COMSOL Multiphysics® simulation, ... Read More
Microchannel heat sinks designed for applications in electronic cooling and having microscale heat transfer combine the attributes of high material compatibility, high surface area per unit volume ratios, and large potential heat transfer performance with a highly sophisticated and ... Read More
Testing and verification is very important to increase reliability of a system. In water analysis its purity is verified using different test methods. Biosensors are very useful to detect the microorganisms present in water. This paper presents a method to detect E.coli bacteria in water ... Read More
A compression driver is a certain type of electrodynamic loudspeaker which has a phase plug with slits in front of the diaphragm. The slits are narrow enough that the so-called viscothermal effects are of significant importance. In this paper a 2D axisymmetric finite element model of a ... Read More
This paper shows a model to estimate the scaling parameters for reverse osmosis membrane processes. The model takes into account the concentration polarization of ionic species in the membrane channel of spiral-wound modules and the effect of the spacers on the flow. The scaling ... Read More
Self-heating is a problem to consider for Ultrasound Imaging probes. Since the probe is in contact with the skin, it’s necessary to find a solution to lower the front face temperature in order to avoid patient discomfort, even at the most demanding operating condition. One solution ... Read More
Simulation on loudspeaker drivers require a conventional fully coupled vibro-acoustic model to capture all effect. An accurate vibroacoustic model can be time-consuming to solve, especially in 3D. In practical applications, this results in poor efficiency concerning the decision-making ... Read More
In the Collaborative Research Centre 692 at TU Chemnitz several academic institutions work on aluminum matrix composites (AMCs). These materials consist of an aluminum matrix, which is reinforced by SiC or Al2O3 particles with dimensions less or equal 1 µm. One main task is finishing ... Read More
