See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Due to the increase on the academic and industrial interest on thermal energy storage (TES) systems, the EU Horizon project HYSTORE is developing 4 different solutions. In these solutions, the use of thermochemical materials (TCM) and phase-change materials (PCM) are proposed. We ... Read More
In power electronics applications, microelectronic chips face swift temperature changes during operation, characterized by heat pulses of sub-millisecond duration with temperatures rising by hundreds of Kelvin. Over time, these conditions may lead to degradation in the metallization ... Read More
HETT22 is a software developed through joint efforts by Deflexional and Heidelberg Materials. It enables construction companies to accurately simulate, plan and monitor heat and strength development in concrete after castings. Leveraging the power of the COMSOL Multiphysics® software, ... Read More
The pore water pressure in the vadose zone is controlled by the interaction between the soil and the atmosphere through evaporation and infiltration. These processes are strongly influenced by the soil's hydraulic conductivity and water retention properties (Guida et al., 2023). In this ... Read More
利用COMSOL&MATLAB联合完成三自由度隔振器的动力学建模,为控制算法的设计提供更准确的系统模型,结合主动隔振、被动隔振两种方式,使隔振器全频段隔振性能进一步提升。在该建模中利用了COMSOL Multiphysics模块、结构力学模块、LiveLink for MATLAB模块搭建了隔振器虚拟样机,完成从平台装配至平台闭环驱动等若干必要建模步骤,有效解决了将特殊柔性结构简化为螺旋弹簧导致的结构高阶模态丧失的问题,更能真实、全面反映系统的结构特性;同时,创新性的进行惯性传感器与隔振器的动力学耦合,最终将得到的模型系统传递函数与实际系统传递函数进行对比 ... Read More
Innovative materials, such as ultra-high-performance fiber-reinforced-concrete (UHP-FRC), provide an opportunity to reduce building energy loss by developing energy-efficient facade panels. However, investigating the thermal performance of these façade systems without considering the ... Read More
Among the various technological platforms, which are currently investigated as candidates for the implementation of large-scale multi-qubit quantum computers, spin qubits in silicon quantum dots (QDs) are one of the most attractive. Long spin lifetimes can indeed be achieved in ... Read More
Solar energy, being the most abundant natural source of renewable energy, will play a crucial role in the ongoing global renewable energy translation. However, energy converted utilization of solar energy, which can be either thermal or electrical, technologies have the limitation of ... Read More
Nondestructive inspection (NDI) of damages (e.g., imperfect or degraded bonding lines) or the remaining strength of adhesively bonded lap joints is critical for the operational safety of aircrafts and vehicles. It remains a challenge to use the conventional NDI to quantitatively infer ... Read More
The process-induced deformation in the DED fabricated part is a critical issue to the scaling of the technology. Currently, an inefficient and expensive experiment trial-and-error approach is utilized to tackle this issue, however it is not feasible for large parts. Researchers have ... Read More
