See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
In many groundwater studies, the areal extent of an aquifer is much larger than its thickness so that flow and transport take place primarily in horizontal directions. Thus, the most common type of modeling in practical applications is two-dimensional involving vertically averaged ... Read More
The present work introduces a new methodology, based on COMSOL Multiphysics® Application Builder, to account for the “beam trapping” effect in multiphysical modelling of laser welding. Incident intensities involved in laser welding processes are high enough to induce material ... Read More
This paper presents a snap shot of experimental work, which has been conducted at NTNU on billet heating with induction coils. A significant volume of experimental data have been collected for coils running with up to 0.2T: high accuracy Hall probe readings (+/-1%), metal ... Read More
OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and ... Read More
In this paper, the underlying concept of electroacoustic absorbers is studied with the help of Comsol Multiphysics® Acoustics Module. Among the different ways to obtain variable acoustic properties on an electroacoustic transducer's voicing face, there is the shunting of the ... Read More
Microchannel has shown potential to dissipate high heat flux in past years [1][2]. At the same time, liquid cooling attracts more and more attention from researchers for its favorable thermal properties and ability to cool down hot and keep acceptable system temperature [3][4][5]. This ... Read More
The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion ... Read More
Electronic Crystals are common forms of organization of charge in solids. They appear widely from nano-structure semiconductors to synthetic organic conductors. Charge density wave, the best treated kind of electronic crystal, can readjust its elementary units by creation of topological ... Read More
This study explores the significance of the recoil pressure, Marangoni convection and surface tension effects in selective laser melting of Ti-6Al-4V. A pragmatic two dimensional model with appropriate powder distribution over a substrate of finite thickness has been developed in COMSOL ... Read More
The Service des Basses Températures of CEA-Grenoble has developed a cryostat able to produce solid hydrogen ribbons of thickness between 50 and 100 µm. These ribbons are intended to be used in high-power laser facilities to study proton-laser interactions. The current developments are ... Read More
