See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Fusion is a form of nuclear energy which has impressive advantages from the point of view of fuel reserves, environmental impact and safety. If successful, fusion energy would ensure a safe, resource conserving, environmentally friendly power supply for future generations. In a world ... Read More
Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group ... Read More
The nanofluid is a class of fluids with high thermal conductivity and non-Newtonian flow behaviors. In this work, we present numerical simulations of spreading characteristics for nanofluids droplet impinging on the solid surface which is of great importance in a number of applications ... Read More
This work uses COMSOL to simulate the Dielectric Barrier Discharge (DBD) lamp coupled to the external electrical circuit. The coupled system is modeled to capture the effect of the electrical parasitic elements on the efficiency of the DBD which is more realistic as compared to previous ... Read More
Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a ... Read More
Magnetic cantilever measurements have detected half-flux states in mesoscopic rings of the layered material Sr2RuO4, adding evidence that superconducting Sr2RuO4 may be described by a p-wave order parameter. A proposal accounting for this behavior has been presented in which the ... Read More
System for in-situ control of the ion angular distribution function (IADF) in plasma reactor is modeled. Typical IADF depends on the pressure, bias and excitation frequency. It is formed due to a difference in the physical properties of the plasma and sheath domains. The IADF is modified ... Read More
Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and ... Read More
Passive, one-way valves, also known as check valves, while common at the macro scale, are an essential microfluidic feature that facilitate flow rectification. These structures are also commonly used in reciprocating micropump configurations to control flow. Their operation can be ... Read More
Perfectly matched layers (PML) are an efficient alternative for emulating the Sommerfeld radiation condition in the numerical solution of wave radiation and scattering problems. The key ingredient of the PML formulation is the complex scaling function, which controls the anisotropic ... Read More
