See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is ... Read More
Dr. Bernardi is a Research Engineer with Ford Motor Company in Dearborn, MI. Her research focuses on the analysis and simulation of electrochemical energy-storage and conversion systems. In particular, Dr. Bernardi develops mathematical models that predict system behavior and identify ... Read More
A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an ... Read More
在实验中发现锌对称电池运行过程中电解液会发生自然对流,针对此现象我们通过comsol中的三次电流分布和层流接口进行模拟,从而获得了电池运行过程中的电解液浓度分布,电压变化情况等信息 Read More
This work is to present an implementation of COMSOL with MATLAB® [1] for the liquid cooling system of a battery pack based on the physics in COMSOL. The m.file of a model of battery module from COMSOL 4.2 is exported and modified to run in MATLAB®, as well as is managed by using another ... Read More
The reaction current density is an important process parameter of lithium-ion battery, significantly influencing its electrochemical performance. In this study, aimed at the discharge process of lithium-ion power battery, an electrochemical-thermal model was established to analyze the ... Read More
In our dynamic energy landscape, it is increasingly important to utilize energy efficiently and minimize waste. To achieve this, advancing our research beyond traditional battery storage, which has numerous limitations, is crucial. One promising solution is compressed gas energy storage. ... Read More
本工作的主要内容是探究软包电池在充放电循环中由电池自身产热导致的温度分布以及温度对电化学反应速率的影响。模型中的电池传热模型由八个尺寸为1cm×1cm×180μm的电池微元组成,每个电池微元被视为一个均匀热源,使用COMSOL Multiphysics中的固体传热模块。电化学模型使用COMSOL Multiphysics中的电池模块,通过P2D模型计算电池的充放电过程以及反应热。每一个P2D模型对应传热模型中的一个电池微元,将电池的反应热视为电池微元的单位体积产热量。在三维传热模型的每一个电池微元中植入一个域探针,用来测量每个电池元在充放电过程中每一个时刻的平均温度 ... Read More
在设计方型电池充电策略时,往往需要先获得电池在不同温度的充电能力。制作方型电池三电极并测试其不同温度的充电能力过程繁琐且成功率低,因此通常采取制作相同材料的小容量软包三电极电池,进行不同温度、不同倍率充电测试并监控负极电位,作出充电能力曲线。但是小容量软包(<10Ah)与大容量方型(>100Ah)电池的结构差异较大,不能准确反映方型电池的充电能力。 利用COMSOL直接仿真长度约260mm,容量108Ah的方型电池的充电能力。在COMSOL中耦合锂电池模块和固体传热模块,建立方型电池模型。输入方型电池的设计信息,正负极材料半电池充放电数据和方型电池在-20℃、 ... Read More
Solid Oxide Fuel Cells (SOFC) and Li-ion batteries (LIB) are electrochemical devices where performance is dependent on reactions inside porous electrode microstructures. Here we use tomographic techniques to probe 3D electrode structures (anodes and cathodes) at micro-nanometer length ... Read More