See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This paper presents the multiphase 2D axisymmetric simulation of a three-dimensional flow-focusing microfluidic droplet generator using the laminar two phase flow, phase field interface in COMSOL Multiphysics®. The performance of the device is characterized at different flow conditions. ... Read More
Parallelization of microfluidic droplet generators is one of the major challenges that droplet microfluidics has to overcome to contribute significantly towards the sustainable manufacturing of advanced materials such as nanoparticles, quantum dots, active pharmaceuticals, etc. A ... Read More
Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine ... Read More
Introduction Droplet-based microfluidics is a large source of research for scientists of new biotechnologies, aerosols or other 2D-Microfluidics devices. Here, we will focus on an industrial application of a 3D microfluidic device : the PH2DG, Pneumo-HydroDynamic Droplet Generator. The ... Read More
The effect of static magnetic fields (SMF) on living matter such cell cultures and living organisms has been a promising research field. Efforts have been given in the understanding of the underlying mechanisms and interaction between the field and the biological system with its ... Read More
Free convective fluid flow and heat transfer in cavity domains has received considerable attention over the past few years and the importance of this problem is due to the broad spectrum of industrial applications and environmental situations. The aim of this study is to investigate the ... Read More
Direct numerical simulation of single- and two-phase flow in real pore systems is addressed in our paper. The X–ray computed micro-tomography technique has been applied first to reconstruct in details a real pore space of a subcentimetric sample. Making use of dedicated software (ScanIP) ... Read More
The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation ... Read More
Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, ... Read More
We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation ... Read More