See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
A compression driver is a certain type of electrodynamic loudspeaker which has a phase plug with slits in front of the diaphragm. The slits are narrow enough that the so-called viscothermal effects are of significant importance. In this paper a 2D axisymmetric finite element model of a ... Read More
Studying teeth grinding behavior and other oral conditions requires the ability to accurately measure the pressure on the teeth. Placing a sensor in the mouth requires small size devices with powering and measurement techniques that do not hinder the normal life of the patient. To meet ... Read More
In an Adaptive Optics system, the magnetic coupling of the Deformable Mirror with the Reference Frame may generate undesired forces and torques when any mechanical misalignment occurs. Moreover, the concave or convex shape of the thin, adaptive mirror shell undergoes similar permanent ... Read More
Mutual Inductance based Level sensor has been proposed for high temperature (1000 C) molten metal applications. Modelling and Simulation studies are done using COMSOL Multiphysics® to obtain optimum sensor design, excitation frequency and sensor characteristics. Further temperature ... Read More
Microwave drying of foodstuffs is a complex interplay of mass, momentum, and energy transport coupled with large deformation of the solid. To be able to better understand the microwave drying process, a fundamentals-based three dimensional (3D) multiphase porous media based model is ... Read More
Chemical reactions conducted under microwave irradiation have high reaction rates and high selectivity, but these reaction rates are not always reproducible. To achieve reproducibility, a solid-state microwave source with an ultra precise oscillator, high power amplifier module (HPA), ... Read More
The conversion of mechanical energy from environmental vibrations into electrical energy is a key point for powering sensor nodes toward the development of autonomous sensor systems. Piezoelectric energy converters realized in a cantilever configuration are the most studied for this ... Read More
This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a ... Read More
There is a requirement for an RF (Radiofrequency) industrial dryer that will be capable of dehydrating foodstuff to the correct level after the product has been fried. RF drying should actively target moisture, due to waters high dielectric properties. An industrial dryer can be ... Read More
The present project aims at modelling a generator that harvests energy from the variation in blood pressure by exploiting the motion of the arterial wall between the diastolic and systolic phase of the cardiac cycle. The concept is to use a highly electrically conductive fluid, which is ... Read More