Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Capacitance and Inductance Matrices for Multistrip Lines

S. M. Musa, and M. N. O. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

In this paper, we apply COMSOL Multiphysics, a finite element package, to compute the capacitance of a single centered microstrip line and the capacitance and inductance matrices of coupled multistrip lines. We compared our results with those in the literature such as variational technique, method of moments, finite difference method, Green’s function-integral equation technique, and found them ...

Resonances in Tapered Double-Port TEM Waveguides

J. Kaerst
HAWK, Fachhochschule Hildesheim/Holzminden/Göttingen, Germany

In this paper resonances in tapered double-port TEM waveguides are used as benchmark for simulations. FEM simulations with COMSOL Multiphysics® and simulations using generalised telegraphist's equations with MATLAB® are compared to ananalytical method capable of calculating the resonances of higher order modes. It is valid for tapered double-port TEM waveguides with constant ...

Calculations of the FMR Spectrum in 1D Magnonic Crystals

M. Mruczkiewicz[1], M. Krawczyk[1], V.K. Sakharov[2], Yu. V. Khivintsev[2], Yu. A. Filimonov[2], S. A. Nikitov[3]
[1]Nanomaterials Physics Division, Faculty of Physics, Adam Mickiewicz University, Pozna?, Poland
[2]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Saratov Branch), Saratov, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia
[3]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia

FMR spectra of the periodic microstructures (one-dimensional magnonic crystals, 1D MCs) were obtained using COMSOL with use partial differential equation interface. Results of these calculations were successfully compared with an experimental data for Damon-Eshbach (DE) and Backward-Volume (BV) geometries. The presented tool allows to analyze periodic structures with various geometries and ...

S-parameter Sensitivity Analysis of Waveguide Structures with FEMLAB

Li, D., Nikolova, N.K.
Computational Electromagnetics Research Laboratory, Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario

For the purpose of accurate and efficient design of a microwave structure, sophisticated optimization techniques are typically used. The optimization process can greatly benefit from the availability not only of the objective function, but also its gradient. Numerical electromagnetic solvers do not provide the gradient information, thus defaulting to the finite-difference approximation at the ...

Complex K-Bands Calculation for Plasmonic Crystal Slabs by Means of Weak Formulation of Helmholtz's Eigenvalue Equation

G. Parisi[1], P. Zilio[1], F. Romanato[1]
[1]University of Padova, Padova, Italy

We present a Finite Element Method (FEM) to calculate the complex valued k(?) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity and ...

Virtual Homogeneous Isotropic and Real Unhomogeneous Anisotropic Metamaterials

Akalin, T.
IEMN (Institut d’Electronique de Microélectronique et de Nanotechnologie), CNRS UMR 8520, Dpt DHS, USTL (Université des Sciences et Technologies de Lille)

Characteristics on metamaterials and potential applications are presented with the FEMLAB® software simulations results. By definition, metamaterials are materials which exhibit properties which do not exist naturally. Another point is that metamaterials are associated with the negative refractive index property. In the first part, negative refraction will be defined and illustrated by ...

Analysis of Transient Electromagnetic Dipole

J.C. Crompton[1], K.C. Koppenhoefer[1], and S.Y. Yushanov[1]
[1]AltaSim Technologies, LLC, Columbus, Ohio, USA

This paper presents the solution of a transient electromagnetic problem using COMSOL Multiphysics. The paper also presents a closed-form solution of a transient electromagnetic dipole. The computational solution compares well with a closed-form solution for this problem. This work implements Maxwell’s equations in the RF module and optimizes solver parameter settings to resolve the transient ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Dielectric Properties Characterization of Thin-film Samples by using Scanning Near-Field Microwave Microscope (SNMM) and FEMLAB

Huang, S.1, Reeves, M.E.1, 2
1 Department of Physics, George Washington University, Washington
2 Naval Research Laboratory, Washington, DC

Scanning Near-field Microwave microscope represents a novel approach to thin film dielectric property analysis with high resolution. In this technique, a sharp probe tip is brought into close enough proximity to the sample surface that the EM field are well described by the near field theory. The question addressed here is how to determine material parameters (in this case dielectric constant) ...

Quick Search