Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Chiral surface plasmon polaritons on metallic nanowires

S. Zhang
Institute of Physics CAS
Beijing
China

Chiral SPPs can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Chirality is preserved in the emitted photons, creating a subwavelength ¼ wave plate.

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Calculations of the FMR Spectrum in 1D Magnonic Crystals

M. Mruczkiewicz[1], M. Krawczyk[1], V.K. Sakharov[2], Yu. V. Khivintsev[2], Yu. A. Filimonov[2], S. A. Nikitov[3]
[1]Nanomaterials Physics Division, Faculty of Physics, Adam Mickiewicz University, Pozna?, Poland
[2]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Saratov Branch), Saratov, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia
[3]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia

FMR spectra of the periodic microstructures (one-dimensional magnonic crystals, 1D MCs) were obtained using COMSOL with use partial differential equation interface. Results of these calculations were successfully compared with an experimental data for Damon-Eshbach (DE) and Backward-Volume (BV) geometries. The presented tool allows to analyze periodic structures with various geometries and ...

S-parameter Sensitivity Analysis of Waveguide Structures with FEMLAB

Li, D., Nikolova, N.K.
Computational Electromagnetics Research Laboratory, Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario

For the purpose of accurate and efficient design of a microwave structure, sophisticated optimization techniques are typically used. The optimization process can greatly benefit from the availability not only of the objective function, but also its gradient. Numerical electromagnetic solvers do not provide the gradient information, thus defaulting to the finite-difference approximation at the ...

Simulation of Realistically Shaped Nanoantennas Using COMSOL Multiphysics

C. Moosmann, G. Sigurdsson, K. Dopf, M. D. Wissert, H.-J. Eisler, and U. Lemmer
Light Technology Institute
Karlsruhe Institute of Technology
Karlsruhe, Germany

Nanoantennas – nanometer sized gold structures resonant at optical wavelengths have interesting properties for many applications. For numerical simulations of such structures simplified geometries are usually considered. However the fabricated shapes still differ significantly from perfect geometries and such structures are sensitive to geometrical changes. Here, we investigate how the ...

Simulation of the Destruction Effects in CMOS-Devices caused by Impact of Fast Transient Electromagnetic Pulses

M. Rohe, S. Korte, and M. Koch
Institute for the Basics of Electrical Engineering and Measurement Science, Leibniz Universität Hannover, Germany

In this paper will be presented how an electronic system and its components will respond in case of an impact of an external electromagnetic pulse (EMP). In the first instance the coupling process of transient electromagnetic pulses into electronic systems will be shown. Out of that the disturbing signal inside the system, which is necessary for the following simulation, will be described ...

Analysis of Transient Electromagnetic Dipole

J.C. Crompton[1], K.C. Koppenhoefer[1], and S.Y. Yushanov[1]
[1]AltaSim Technologies, LLC, Columbus, Ohio, USA

This paper presents the solution of a transient electromagnetic problem using COMSOL Multiphysics. The paper also presents a closed-form solution of a transient electromagnetic dipole. The computational solution compares well with a closed-form solution for this problem. This work implements Maxwell’s equations in the RF module and optimizes solver parameter settings to resolve the transient ...

Analysis of Electromagnetic Propagation for Evaluating the Dimensions of a Large Lossy Medium

A. Pellegrini[1] and F. Costa[1]
[1]ALTRAN Italia, Pisa, Italy

In this paper the propagation of a plane wave in a large lossy medium is presented. The investigated geometry consists in a wedgeshaped lossy dielectric embedded in a lossy material with different electromagnetic properties. The aim of the study is to determine the feasibility of a radar technique for measuring the length of the dielectric wedge. In order to address this problem and to evaluate ...

Study on Electromagnetic Waves in the Terahertz Region Using COMSOL Multiphysics

T. Nishida[1]
[1]Shinshu University, Matsumoto City, Nagano, Japan

Electromagnetic waves in the terahertz (THz) region may be useful for non-destructive imaging and biosensing technology. This presentation shows the example of our research aimed at the development of application in the THz region. The result of comparing the FDTD method and COMSOL Multiphysics is demonstrated in the investigation of metamaterial and the photoconductive antenna.

Virtual Homogeneous Isotropic and Real Unhomogeneous Anisotropic Metamaterials

Akalin, T.
IEMN (Institut d’Electronique de Microélectronique et de Nanotechnologie), CNRS UMR 8520, Dpt DHS, USTL (Université des Sciences et Technologies de Lille)

Characteristics on metamaterials and potential applications are presented with the FEMLAB® software simulations results. By definition, metamaterials are materials which exhibit properties which do not exist naturally. Another point is that metamaterials are associated with the negative refractive index property. In the first part, negative refraction will be defined and illustrated by ...

Quick Search