Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Cloud Computations for Acoustics with Coupled Physics

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Multicomponent Diffusion Applied to Osmotic Dehydration

H. Cremasco[1], K. Angilelli[1], D. Borsato[1]
[1]Universidade Estadual de Londrina, Londrina, Paraná, Brazil

The transfer of sucrose and fructooligosaccharides to melon and water to solution was modeled based on generalized form of Fick’s second law for simultaneous diffusion and resolved by the finite element method using the software package COMSOL Multiphysics® software. The diffusion coefficients, the mass transfer coefficient and the Biot number were determined using the simplex ...

FEMLAB as a general tool to investigate the basic laws of physics

Bräuer, K.
Universität Tübingen, Inst. f. Theoretische Physik, Tübingen

The common basis of physical laws is the continuity of the action field. It implies Structural mechanics, Hydrodynamics, Quantum mechanics, Electrodynamics and the self-organisation of matter. A general tool to investigate all the basic equations is FEMLAB. In academic training it allows to take the concentration away from the manifold of mathematical methods of solutions and draw it to the real ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Second Order Drift Forces on "Offshore" Wave Energy Converters

L. Martinelli[1], A. Lamberti[1], and P. Ruol[2]

[1]DISTART Idraulica, Università di Bologna, Bologna, Italy
[2]IMAGE, Università di Padova, Padova, Italy

Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this condition, which is typical of installations involving wave energy converters, makes this problem particularly ...

Estimation of Boundary Properties Using Stochastic Differential Equations and COMSOL

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The inverse diffusion problems deal with the estimation of many crucial parameters such as the diffusion coefficient, source properties, and boundary conditions. Such algorithms are widely applied in many design problems in different physical, chemical, and biological fields. Recently, the estimation of the boundary properties, of the diffusion process, have attracted researchers. We first ...

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.

Electromagnet Shape Optimization using Improved Discrete Particle Swarm Optimization (IDPSO)

R. S. Wadhwa[1], T. Lien[1], and G. Monkman[2]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

The magnetic field gradient produced by an electromagnet gripper head depends on its design. Stochastic Methods offer certain robustness to the design optimization process. In this paper, Improved Discrete Particle Swarm Optimization (IDPSO) searching technique is applied to the shape and magnetic field gradient optimization of an electromagnet head. The magnetic field and forces are computed ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. The ...

Photon Migration Through Multiple Layers of Biological Tissue

M.S. Yeoman[1], E. Sultan[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]College of Technological Studies, PAAET, Adailiyah, Kuwait

The modeling of light propagation through multiple layers of biological tissue are assessed & compared to the theoretical predictions by Perelman at al. [94 & 95] of the most-favorable-path (MFP). The MFP on which photons will be found can be obtained from the path of the net flux propagation using the diffusion equation. The diffusion equation is valid when studying diffuse light propagation, ...

Quick Search