Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Material Characterization Method Development: From Education to Design Optimization

C. Morgan[1], N. Kenkare[1], M. Williams[2], A. Peterson[2], and D. Williams[2]
[1]Alcon Eye Care Division of Novartis R&D, Duluth, GA
[2]Alcon Eye Care Division of Novartis R&D and Georgia Institute of Technology Co-op Program, GA

Introduction of silicone hydrogel contact lens materials provided products of unprecedented capability to deliver oxygen to the eye during wear. One additional material characteristic of interest is the material’s permeability to ions. This paper discusses descriptive tools and optimization of an impedance method of characterizing ion permeability. A physical model of conductive paper with ...

Virtual Prototyping

B. Engquist
University of Texas, Austin

During the past 50 years, Computational Science has developed as its own branch of mathematics. This development was mainly initiated by the progress of modern computers. Todays modeling of physical phenomena must not only account for the computational time but also the time engineers spend on setting up the computation. This in turn has introduced new fields, such as human interaction, to ...

Electromagnet Shape Optimization using Improved Discrete Particle Swarm Optimization (IDPSO)

R. S. Wadhwa[1], T. Lien[1], and G. Monkman[2]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

The magnetic field gradient produced by an electromagnet gripper head depends on its design. Stochastic Methods offer certain robustness to the design optimization process. In this paper, Improved Discrete Particle Swarm Optimization (IDPSO) searching technique is applied to the shape and magnetic field gradient optimization of an electromagnet head. The magnetic field and forces are computed ...

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to validate ...

Making Cartograms and Using them for Data Acquisition

P. Mercure[1], and R. Haley[2]
[1]The Dow Chemical Company, Midland, MI
[2]ATM Research, Midland, MI

We demonstrate cartogram construction, where a geographical map is distorted to represent some measure, for example population, while trying to keep the shape of regions recognizable. We then apply this cartogram construction technique to optimize thermocouple locations. A heat generation and conduction model is used initialize the cartogram construction algorithm. A uniform distribution of ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Using Advanced FEMLAB Features for SHA-FEM Coupling

Kildishev, A., Chettiar, U.
School of Electrical and Computer Engineering, Purdue University

Spatial Optical Analysis (SHA) of electromagnetic fields is a useful tool in analytical and numerical analysis of complex electromagnetic sources. A mathematical background for setting the Dirichlet boundary condition in the Finite Element Method (FEM) is shown.

FEMLAB as a general tool to investigate the basic laws of physics

Bräuer, K.
Universität Tübingen, Inst. f. Theoretische Physik, Tübingen

The common basis of physical laws is the continuity of the action field. It implies Structural mechanics, Hydrodynamics, Quantum mechanics, Electrodynamics and the self-organisation of matter. A general tool to investigate all the basic equations is FEMLAB. In academic training it allows to take the concentration away from the manifold of mathematical methods of solutions and draw it to the real ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

A General Method for Solving Equations - The Dynamical Functional Particle Method

M. Gulliksson, and S. Edvardsson
Mid Sweden University, Sundsvall, Sweden

Given any equation L(u)=0, e.g. a partial differential equation, it can be considered to be the stationary solution of a time dependent equation (in fact, time need only to be fictitious time not real time). Our approach is to choose the time dependence in analogy with an oscillating particle system including damping in order to damp out the time derivatives and attain a stationary solution ...

Quick Search