Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Image Denoising and Segmentation using COMSOL Multiphysics

F. Zama
Department of Mathematics, Bologna University, Bologna, Italy

Partial differential equations have recently become popular and useful tools for several image processing tasks such as image de-noising and segmentation.In this work, we implement a unified image de-noising and segmentation approach which is based on a nonlinear diffusion equation with a reactive term for achieving edge preserving smoothing and segmentation. This model is highly nonlinear and ...

Electromagnet Shape Optimization using Improved Discrete Particle Swarm Optimization (IDPSO)

R. S. Wadhwa[1], T. Lien[1], and G. Monkman[2]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

The magnetic field gradient produced by an electromagnet gripper head depends on its design. Stochastic Methods offer certain robustness to the design optimization process. In this paper, Improved Discrete Particle Swarm Optimization (IDPSO) searching technique is applied to the shape and magnetic field gradient optimization of an electromagnet head. The magnetic field and forces are computed ...

FEMLAB modules for bioengineering education

Butler, P.J.1, Ferko, M.C.2
1 Department of Bioengineering, Penn State University
2 Stryker Orthopedics Corporation

As biologists uncover the structural and functional complexity of living organisms, it is increasingly clear that mathematical models are needed to synthesize experimental data and predict biological responses to external stimuli. Bioengineers are well-suited to develop such models and to add mechanics, fluid flow and other physical cues to the understanding of biological structure and ...

Virtual Prototyping

B. Engquist
University of Texas, Austin

During the past 50 years, Computational Science has developed as its own branch of mathematics. This development was mainly initiated by the progress of modern computers. Todays modeling of physical phenomena must not only account for the computational time but also the time engineers spend on setting up the computation. This in turn has introduced new fields, such as human interaction, to ...

Heat, Air, and Moisture (HAM) Modeling of Historic Windows

H.L. Schellen[1]
[1]Eindhoven University Of Technology, Eindhoven, The Netherlands

Windows are the thermal weakest places in the external envelop of buildings. This is true for historic windows with original single pane glazing in historic buildings. To reduce the energy consumption and to improve thermal comfort of historic buildings, replacing these windows by modern double glazed windows affects the authentic character of these buildings too much. One way to improve the ...

Computation of Space-Time Patterns via ALE Methods

V. Thümmler1, and A. Weddemann2
1Department of Mathematics, Bielefeld University, Bielefeld, Germany
2Department of Physics, Bielefeld University, Bielefeld, Germany

Partial differential equations which exhibit solutions that are spatial temporal patterns are often found in biological and chemical systems, e.g. when describing pattern formation in reaction-diffusion systems.Special classes of such patterns are relative equilibria and relative periodic orbits, which are solutions that in an appropriately co-moving frame of reference are stationary and ...

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for effects like growth rates often no analytic models are available. However, in many cases experts have knowledge ...

Robust Design of an LEM by Means of Interval Taylor Extension

B. De Vivo, P. Lamberti, and V. Tucci
Dept. of Electrical and Electronic Engineering, University of Salerno, Salerno, Italy

In this paper, the Robust Design of a Linear Electric Motor (LEM) is performed. A Robust Design is a set of nominal parameters that satisfies the customer constraints with uncertain parameters. In particular, it is possible to obtain the Most Robust Stationary Design (MRSD) of a Performance Function (PF) by looking at the minimum range of the Interval Extension of its Taylor series. Furthermore, ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

A General Method for Solving Equations - The Dynamical Functional Particle Method

M. Gulliksson, and S. Edvardsson
Mid Sweden University, Sundsvall, Sweden

Given any equation L(u)=0, e.g. a partial differential equation, it can be considered to be the stationary solution of a time dependent equation (in fact, time need only to be fictitious time not real time). Our approach is to choose the time dependence in analogy with an oscillating particle system including damping in order to damp out the time derivatives and attain a stationary solution ...

Quick Search