Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

Dynamic Contact & Fatigue Analysis of a CV Boot (Gaiter) Design

M. Yeoman[1], R. Damodharan[1]
[1]Continuum Blue Ltd., Ystrad Mynach, UK

CV boots or gaiters are rubber like material used to cover & protect moveable or articulating components such as CV joints of a vehicle. These are primarily used to protect the articulating joint, by preventing the components from being exposed to the surrounding environment, the preventing the ingress of water, particulate or road grime from mixing with the lubricated articulated components. In ...

Deformation Examination of Circular Membrane by Model for PDMS from Sylgard 186

N. Varga[1]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary

The deformation of one dot of tactile display for visually impaired is examined by Finite Element Method (FEM) in COMSOL Multiphysics® software. A dot with rubber-like material (Polydimethylsiloxane for Sylgard 186) can be described by a circular membrane with Ogden model, which is a well-known hyperelastic material model. For determination of the parameters of the Ogden models simple tension ...

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Simulation eines Festkörperaktuators mit COMSOL Multiphysics

T. Müller, and H. Haase
Universität Hannover, Institut für Grundlagen der Elektrotechnik, Hannover

Bei herkömmlichen Verbrennungsmotoren werden die Ein- und Auslassventile für Kraftstoff-Luft-Gemisch und Abgase nach wie vor rein mechanisch durch Nockenwellen gesteuert. Die Verwendung voneinander unabhängiger Ventilaktoren ermöglicht eine hohe Effizienzsteigerung. Zur Abschätzung des konstruktiven Aufwands eines Aktors auf Basis magnetischer Formgedächtnismetalle wird ein einfaches ...

Determination of the Stress and Strain States in Metallic Structures using Piezoelectrical Transducers

D. Popovici, V. Paltânea, G. Paltânea, and G. Jiga
University of Bucharest

In this paper, we present a modern non-destructive method, using COMSOL Multiphysics, for the evaluation of the stress and strain states in metallic structures. This method can be successfully applied in civil engineering, installations or in structures where the determination of stress state can ot be realized by conventional method.

Numerical Behavior of Different COMSOL Solution Methods for a Heat Transfer Problem Coupled with a Structural Mechanics Problem

W. Joppich1, N. Kopp2, and D. Samokhvalov1
1University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany
2Technisch Mathematische Studiengesellschaft GmbH, Bonn, Germany

We consider an object re-entering the atmosphere at high velocity and a certain angle. As the density of the atmosphere increases, the temperature of the material is increased by friction. It is of interest to know whether the body is only deformed, or if it is destroyed.To answer this question of how the object behaves, we have coupled two heat transfer problems to a structural mechanics ...

Mechanical Behaviour of TiAl Spherical Particles Including Friction Effect

G. Maizza, R. Cagliero, and A. Santoro
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Powder metallurgy is a key technology for manufacturing advanced components based on TiAl alloys. Cold compaction is the primary step to produce green parts. Cold deformation of TiAl powder is difficult due to its typical poor ductility. Plastic deformation and cracking susceptibility of TiAl powder strongly depends on micro-mechanical phenomena. To manage real compaction problems more reliable ...

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail description of all the steps needed to implement the Microplane Model in COMSOL; the formulation is based on the ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Quick Search