Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Stress Field Simulation for Quantitative Ultrasound Elasticity Imaging

L. Yuan[1] and P.C. Pedersen[1]
[1]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison between these results and analytical solutions was used to further validate that stress drops off with ...

Influence of Vickers Indenter Tip Geometry on the Macro-indentation Properties of TiAl Alloys

G. Maizza, and R. Cagliero
Politecnico di Torino
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Torino, Italy

In this work the influence of the geometry of the Vickers indenter tip on relevant indentation properties is investigated during instrumented indentation operated in the macro range (i.e. with forces ranging from 2 to 200 N) and carried out in the case of a homogenized (i.e. heat treated) TiAl alloy. The instrumented macro-indentation test is simulated by Comsol Multiphysics using a full 3D ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of the ...

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Numerical and Experimental Analysis of Natural and Mixed Convection Heat Transfer for Vertically Arranged DIMM

G. Petrone, and G. Cammarata
University of Catania, Catania, Italy

 It is commonly recognized that careful thermal design of electronic equipments represents an unavoidable pre-production step in order to ensure reliability and performance of those components during their functioning. This paper mainly concerns a comparison between experimental and numerical results obtained in studying thermal dissipation in natural and mixed convection conditions for RAM ...

Numerical Modeling and Performance Optimization Study of a Diaphragm Pump for Medical Application

I. Lupelli[1], P. Gaudio[1], A. Malizia[1], R. Quaranta[1]
[1]Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy

In this contribution we present the results of the numerical modeling and performance optimization study of a diaphragm pump for drug infusion. The main objective is to develop a numerical model that replicates the pumping cycle (400ms) and also provides indications about the variation of pumping performance as consequence of the variation of the chamber-diaphragm system geometry, diaphragm ...

Modelisation of a hyperelastic polymer membrane deformation

Hoel, A., Jullien, M.C.
SATIE UMR 8029, ENS-Cachan, Campus de Ker-Lann, Bruz

We report numerical simulations in which a 30 µm thick polymer membrane, glued over a submilimetric polymer chamber, is subjected to a homogeneous pressure over its entire surface. The deflections are obtained as a function of the applied pressure, and are further compared to experimental measurements. Finally, the possible origin of the discrepancy between numerical and experimental results may ...

Durability Analysis on Solar Energy Converters Containing Polymeric Materials

J. Wirth, S. Jack, M. Köhl, and K.-A. Weiß
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

The key issues of the Fraunhofer Institute for Solar Energy Systems are research and development of solar technologies for the fast growing market of solar energy. This paper presents examples of the usage of COMSOL Multiphysics: The ingress of water is a serious reason for the degradation of photovoltaic modules which can hardly be measured using experimental approaches yet. Therefore, a ...

Shearing of the Fiber-Matrix Composite Material and Elastic Properties of Unidirectional Ply

D. Remaoun, and A. Boutaous
Département de Physique, Université des Sciences et de la Technologie, Oran, Algérie

The present work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution was first to simulate the mechanical behavior of a composite, for a given radius of the fiber was able to automate the result for different rays thus different proportions of the reinforcement, the simulation was done with software ...

Optimized Cantilever-to-Anchor Configurations of Buckled Cantilever Plate Structures for Transducer Applications

A. Arpys Arevalo Carreno[1], D. Conchouso Gonzalez[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

The mechanical simulation and analysis of the cantilever-to-anchor configuration for an out-of-plane structure used in transducer applications is reported. The polymer-based Buckled Cantilever Plate “BCP” structure, gives the ability to orient an active device from a horizontal to a vertical position, once assembled. In this paper we compare four different cantilever-to-anchor ...

Quick Search