Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Simulations for the Design of Probe-Heads Micro-Needles

A. Corigliano[1], A. Courard[1], G. Cocchetti[1], P. Gagliardi[1], L. Magagnin[1], R. Vallauri[2], D. Acconcia[2]
[1]Politecnico di Milano, Milano, Italy
[2]Technoprobe, Cernusco Lombardone, Italy

The paper presents recent results concerning the experimental mechanical characterization, the numerical modeling and the design of micro-needles used in the construction of probe heads for wafer testing. A fully coupled electro-thermal model was created using COMSOL and combined to a research-oriented thermo-mechanical Finite Element (FE) code in order to accurately reproduce the micro-needle ...

Dynamic Contact & Fatigue Analysis of a CV Boot (Gaiter) Design

M. Yeoman[1], R. Damodharan[1]
[1]Continuum Blue Ltd., Ystrad Mynach, UK

CV boots or gaiters are rubber like material used to cover & protect moveable or articulating components such as CV joints of a vehicle. These are primarily used to protect the articulating joint, by preventing the components from being exposed to the surrounding environment, the preventing the ingress of water, particulate or road grime from mixing with the lubricated articulated components. In ...

Deformation Examination of Circular Membrane by Model for PDMS from Sylgard 186

N. Varga[1]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary

The deformation of one dot of tactile display for visually impaired is examined by Finite Element Method (FEM) in COMSOL Multiphysics® software. A dot with rubber-like material (Polydimethylsiloxane for Sylgard 186) can be described by a circular membrane with Ogden model, which is a well-known hyperelastic material model. For determination of the parameters of the Ogden models simple tension ...

Polyimide Thermal Micro Actuator

A. Arevalo[1], I. G. Foulds[2]
[1]Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of British Columbia, Vancouver, BC, Canada

Joule heating is simulated in COMSOL Multiphysics® software for the electro-thermal micro actuator. The aim is to choose the optimal design parameters to get the largest possible in-plane displacement. The comparison between the different possible configurations will reveal the optimal parameters for the longest displacement. Our current micro fabrication process allows the actuator to use ...

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Modelling of solute concentration into crud deposits under subcooled boiling conditions

Blondel, P., Girardin, G.
AREVA, Centre Technique Framatome ANP, Dpt Corrosion-Chimie Porte Magenta, Le Creusot France

The modelling of the incorporation of non-volatile solutes from liquid coolant into porous crud deposited on a heating surface under subcooled boiling conditions has been investigated. A suitable model for the concentration of solutes in porous deposits with steam chimneys, proposed by Pan et al., has been studied and implemented with the FEMLAB® software. With this model, the porous ...

Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites

V. Antonucci[1][2], M. Esposito[1], R. Marzella[2], and M. Giordano[1][2]
[1]Institute for Composite and Biomedical Materials, CNR, Portici, NA, Italy
[2]Imast, Portici, NA, Italy

A quasi static indentation test on a laminate composite has been investigated numerically and experimentally. In particular, the test has been implemented by COMSOL Multiphysics® and optimizing the Finite Element and mesh. In addition, the numerical strain results have been validated by the comparison with the respective experimental deformation data that have been obtained by fiber Bragg ...

Numerical Behavior of Different COMSOL Solution Methods for a Heat Transfer Problem Coupled with a Structural Mechanics Problem

W. Joppich1, N. Kopp2, and D. Samokhvalov1
1University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany
2Technisch Mathematische Studiengesellschaft GmbH, Bonn, Germany

We consider an object re-entering the atmosphere at high velocity and a certain angle. As the density of the atmosphere increases, the temperature of the material is increased by friction. It is of interest to know whether the body is only deformed, or if it is destroyed.To answer this question of how the object behaves, we have coupled two heat transfer problems to a structural mechanics ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of the ...

Quick Search