Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Polyimide Thermal Micro Actuator - new

A. Arevalo[1], I. G. Foulds[2]
[1]Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of British Columbia, Vancouver, BC, Canada

Joule heating is simulated in COMSOL Multiphysics® software for the electro-thermal micro actuator. The aim is to choose the optimal design parameters to get the largest possible in-plane displacement. The comparison between the different possible configurations will reveal the optimal parameters for the longest displacement. Our current micro fabrication process allows the actuator to use ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

Generalized Plane Piezoelectric Problem: Application to Heterostructure Nanowires - new

H. T. Mengistu[1], A. García-Cristóbal[1]
[1]Material Science Institute, University of Valencia, Valencia, Spain

The possibility to dispose of two-dimensional (2D) approaches to problems originally posed in a three-dimensional (3D) geometry is always desirable since it reduces significantly the computing resources needed for numerical studies. In this work we report on a new 2D approach called Generalized Plane Piezoelectric (GPP) problem [1] and apply it to the calculation of the strain and electric ...

Simulating Wear in Disc Brakes - new

N. H. Elabbasi[1], M. J. Hancock[1], S. B. Brown[1]
[1]Veryst Engineering, LLC., Needham, MA, USA

Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is Archard’s law, which relates the rate of material removal due to wear to the contact pressure, sliding ...

Stress State Determination in Nanoelectronic Silicon Devices Coupling COMSOL Multiphysics and a Recursive Dynamical CBED Pattern Simulation

A. Spessot[1,2], S. Frabboni[1], A. Armigliato[3], and R. Balboni[3]
[1]Numonyx Advanced R&D NVMTD-FTM, Agrate Brianza, Italy
[2]National Research Center S3, CNR-INFM and Department of Physics, University of Modena e Reggio Emilia, Modena, Italy
[3]CNR-IMM Section of Bologna, Italy

Strained technology is being promoted as the best way to extend the performance of semiconductor transistors. An inhomogeneous layer deposited on top of a silicon device can induce a strong modification in the real silicon strain state, and consequently in its electronic performance. Coupling the finite elements analysis done by COMSOL with a recursive CBED and LACBED dynamical simulation, we ...

Optimized Cantilever-to-Anchor Configurations of Buckled Cantilever Plate Structures for Transducer Applications

A. Arpys Arevalo Carreno[1], D. Conchouso Gonzalez[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

The mechanical simulation and analysis of the cantilever-to-anchor configuration for an out-of-plane structure used in transducer applications is reported. The polymer-based Buckled Cantilever Plate “BCP” structure, gives the ability to orient an active device from a horizontal to a vertical position, once assembled. In this paper we compare four different cantilever-to-anchor configurations: ...

Simulation of Thermal Sensor for Thermal Control of Satellite Using COMSOL Multiphysics

G. Mangalgiri
BITS Pilani K K BIRLA GOA CAMPUS
Zuarinagar
Goa, India

The actuator comprises of a temperature sensitive composite deflecting beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes an expansion in the composite beam thereby causing it to deflect. The deflecting beam impinges on the piezoelectric crystal and generating voltage. Response curves for the deflection versus temperature for temperature ranges ...

Stress and Fatigue Analysis of Subsea Umbilical and Cable Systems

M.S. Yeoman[1], V. Sivasailam[1], T. Poole[3], S. Ingham[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[3]JDR Cable Systems, Littleport, Cambridgeshire, United Kingdom

With the ever changing energy requirements & demand for better communication links across the planet, subsea umbilical & cable requirements are becoming more stringent. Where longer service life at a lower cost is now expected from manufacturers. In addition to this, with the need to exploit more sustainable energy sources from offshore wind & wave, where extreme weather conditions are ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

Virtual Prototyping of a Microwave Fin Line Power Spatial Combiner Amplifier

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]University of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the Virtual Prototyping based on a COMSOL Multiphysics® simulation for a novel Microwave Fin Taper (FT) Spatial Power Combiner (SPC) Amplifier. The analyzed system is waveguide (WG) based, and uses FT Probes to convert the energy of a rectangular WG EM fundamental mode to a Microstrip Transmission Line TEM mode, in order to be amplified by a Solid State Power ...