Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A predictive model for the micro-porosity quantitative in Al-Si alloy

Battaglia, J.L., Rozot, J.M.
France

The fatigue is the most important criterion for the securities parts (brake system for example). The increasing use of shaped cast aluminium in the security automotive parts has focused interest on the fatigue of theses alloys. The specific foundry software use empirical laws that do not fit with the reality, above all concerning the aluminium alloys. We proposed a new physical parsimonious ...

Modeling dynamic of composite plate with PZT patches embedded by using FEMLAB3.1

Wang, J.
Mads Clausen Institute, University of Southern Denmark

As an important part of the smart/intelligent structures, the composite plate with piezoelectric-ceramics (PZT) patches embedded has numerous values in many engineering applications, such as: aerospace, automotive, civil and mechanical engineering. A composite thin plate excited by PZT actuators is considered in this work. To describe the dynamic response of the quadrate plate clamped at its ...

COMSOL Multiphysics® Software for Simulation of Surface Response to Excitation Method for Manufacturing Process Performance Monitoring

H. Fekrmandi[1], N. Miniello[1], R. Kiflemariam[1], I. Nur Tansel[1]
[1]Mechanical & Materials Engineering Department, Florida International University, Miami, FL, USA

In this study, COMSOL Multiphysics® software was used to simulate the surface response to excitation method (SuRE). An aluminum beam with a piezoelectric element bonded is modeled using the COMSOL Acoustics Module. A frequency domain sweep study was performed to simulate the sweep sign generation. The frequency spectrum of the structure is monitored through a frequency range of (20kHz-400kHz). A ...

Platform Isolation Using Out-of-Plane Complaint Mechanisms

A. Arevalo[1], E. Rawashdeh[1], I. G. Foulds[2]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then presented in order to evaluate the feasibility of building it using commonly used materials in MEMS. Our ...

Finite Element Approach for the Analysis of the Fuel Cell Internal Stress Distribution

E. Firat, P. Beckhaus, and A. Heinzel
Zentrum für BrennstoffzellenTechnik (ZBT)
Duisburg, Germany

A fuel cell stack is a setup of a number of single fuel cells which have to be mechanically compressed each other to ensure good electrical conductivities and tightness against leakage of supplying gases (e.g. hydrogen) and cooling media. In this study a 3D FEM model is developed with COMSOL Multiphysics® to analyze the mechanical design of a fuel cell stack. The material properties of the ...

Thermal-Electrical Study of an Ultra-fast Disconnect Switch with a Piezoelectric Actuator

L. Graber[1], C. Widener[1], S. Smith[1], M. Steurer[1]
[1]Center for Advanced Power Systems (CAPS), Florida State University, Tallahassee, FL, USA

A research team at FSU CAPS is developing a novel fast disconnect switch based on a piezoelectric actuator for use in next-gen electric power distribution systems. COMSOL Multiphysics® software was used to optimize geometry and material selection of the disconnect switch. Current conduction, mechanical stress, and electrostatic simulations were performed to confirm that design requirements of ...

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

A Flexible Scheme For Numerical Homogenisation In Linear Elasticity

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Germany
[2]Université Pierre et Marie Curie Paris VI, France
[3]Charité-Universitätsmedizin Berlin, Germany

Musculoskeletal mineralised tissues (MMTs), like bone or tendon, are a prime example of naturally occuring, hierarchically structured material. They display a great variety in mechanical function but are all based on essentially the same building block: the mineralised collagen fibril (100 nanometer in diameter). This building block is arranged in various spatial structures across many length ...

Modeling and Simulation of Dual Application Capacitive MEMS Sensor

A. Ravi[1], R. Krishna[1], J. Christen[1]
[1]Arizona State University, Tempe, AZ, USA

Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first designed and simulated to work as a CMUT operating at about 5 MHz frequency. The device can also function as a ...

Magnetorheological Fluid Based Braking System Using L-shaped Disks

M. Hajiyan[1], S. Mahmud[1], H. Abdullah[1]
[1]School of Engineering, University of Guelph, Guelph, ON, Canada

This paper presents a novel design of multi-disks Magnetorheological braking system (MR brake) for automotive application. Magnetic saturation in both electromagnetic core and MR fluid is considered in this paper. The electromagnetic analysis of the proposed configuration is carried out using Finite Element based COMSOL Multiphysics® software (AC/DC Module). The system geometry, created using ...

Quick Search