Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

FEMLAB® Performance on 2D Porous Media Variable Density Benchmarks

Holzbecher, E.
Humboldt Universität Berlin, IGB, Berlin, GERMANY

Variable density problems are suitable test-cases for multi-physics codes, as the interaction between flow and transport processes is a characteristic of the observed phenomena. This contribution focuses on density-driven flow benchmarks in porous media. Here FEMLAB® results are shown for the Henry model concerning stationary saltwater intrusion, and the Elder heat convection experiment in a ...

Coupled Models of Lithospheric Flexure and Magma Chamber Pressurization at Large Volcanoes on Venus

G. Galgana[1], P. McGovern[2], and E. Grosfils[2]

[1]Lunar and Planetary Institute, Houston, Texas, USA
[2]Pomona College, Claremont, California, USA

We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic flexure of the lithosphere beneath the edifice load, and (2) Pressurization of a magma-filled chamber that serves ...

Modeling Geophysical Fluid Flows Using COMSOL: Working Towards a Hydrodynamic Model of the Chesapeake Bay

M. Boe, R. Malek-Madani, D. R. Smith, and M. E. C. Vieira
United States Naval Academy, Annapolis, MD, USA

The outline for this presentation is:Chesapeake Bay BasicsMathematical FrameworkLinear Western Intensification Models -Stommel (1948), Munk (1950)Non-linear equations solved in rectangular geometriesThree-dimensional Chesapeake Bay bathymetry attempts

Channels and Melting in Deformable Porous Media

S. L. Butler

Department of Geological Sciences, University of Saskatchewan, SK, Canada

Partial melting occurs beneath mid-ocean ridges in Earth's mantle and the resulting liquid migrates to the surface to form a new oceanic crust. In this system, mass can be exchanged between the liquid and solid phases through melting and solidification and, at the high temperatures and pressures associated with the Earth's interior, the solid matrix deforms through the process of compaction, ...

Non Linear Mechanical and Poromechanical Analyses: Comparison with Analytical Solutions

M. Souley, and A. Thoraval
INERIS
Ecole des Mines
Parc de Saurupt, France

The long-term behaviour of the underground excavations is a social and economic challenge particularly in the contexts of post-mining or radioactive waste storage. Numerical modelings are currently used to understand and forecast the complex behaviour of rock mass around the underground cavities. In order to accurately perform these multiphysics modelings at high space and time scales, it is ...

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the physical impacts of the heating on the geological media around a deep disposal system. The software was found ...

Evaluation of CO2 Leakages From An Aquifer Storage

A. Thoraval[1], R. Farret[2], A. Cherkaoui[2], and P. Gombert[2]
[1]INERIS, Nancy, France
[2]INERIS, Verneuil, France

This paper presents preliminary estimations of CO2 overpressure into the reservoir and CO2 leakage through the caprock and the overburden. A simple, two-phase flow model in porous media based on Darcy’s law was used, in order to explore easily long time periods. The models produced by COMSOL Multiphysics allow sensitivity studies and preliminary evaluations of the relations between CO2 leakage ...

Quick Search