Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent treatment of the generated gases or liquids. Of all the decontamination methods, bioremediation appears to be the ...

Modeling of the Heat Transfer Between a CO2 Sequestration Well and the Surrounding Geological Formation

B. Sponagle[1], M. Amadu[2], D. Groulx[1], and M. Pegg[2]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada

In a carbon sequestration system CO2 would be pumped down a well and into a reservoir at supercritical temperatures and pressures. An important consideration is the long term stability of the reservoir. The goal of these simulations is to thermally model the injection well and investigate the temperature gradient developed in the cap rock. Ultimately, results from this study will lead to an ...

3-D Multiphysics Modeling of a Producing Hydrocarbon Field

McKenna, J.R.1, Blackwell, D.D.2
1 U.S. Army Engineer Research & Development Center, Geotechnical & Structures Laboratory, Vicksburg, Mississippi
2 Department of Geological Sciences, Southern Methodist University, Dallas, Texas

Thermal anomalies indicating elevated temperatures often are present in producing hydrocarbon fields. This paper discusses precision temperature logs obtained over a salt dome in the Bayou Bleu hydrocarbon field in southwest Lousiana, and presents a 3-D thermal-fluid model of the dome constrained by these types of logs. The numerical model in which both an enhanced thermal conductivity ...

Rigid Inclusion Rotation in Viscous Shear Flow

Taborda, R.1, Ornelas Marques, F.1, Bose, S.2
1 Dep. Geologia and LATTEX, Fac. Ciências, Univ. Lisboa, Lisbon, Portugal
2 GEOMODELS and CGUL, Fac. Ciências, Univ. Lisboa, Lisbon, Portugal

Theoretical and experimental studies on the rotation of rigid inclusions under simple shear flow have typically considered infinite width shear zones and perfect attachment of inclusion to the matrix. According to these models, during progressive simple shear a coherent object would continuously rotate synthetically, which is not the case in many natural ductile shear zones. In this work we ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

Lava Tubes at Shallow Depth

M. Di Bari, and G. Zito
University of Bari, Italy

Many theoretical studies concerning lava tubes focus on the thermal disturbances generated on the earth surface. Recently a solution was suggested, where a lava tube located at a great depth h in the soil, where the ratio between h to the major axis of the ellipse a is higher than 10. However, lava tubes more frequently are located at shallower depths.  In this work we ...

Matching 4D Porous Media Fluid Flow GeoPET Data With COMSOL Multiphysics Simulation Results

J. Lippmann-Pipke, J. Kulenkampff, G. Marion, and M. Richter
Helmholtz-Zentrum Dresden
Rossendorf, Institut of Radiochemistry
Research Site Leipzig
Reactive Transport Division
Leipzig, Germany

We apply COMSOL Multiphysics for reproducing our experimental observations of fluid flow and transport processes in geological media. Our experimental GeoEPT-method allows the 4D monitoring of transport processes in geological material on laboratory scale. Explicitly we import “realistic structures” from geologic samples scanned by means of computer tomography (CT) as stl-files into COMSOL ...

A Mass-consistent Atmospheric Model using FEMLAB Optimization

Wang, X., Pepper, D.W.
University of Nevada, Las Vegas, Department of Mechanical Engineering, Las Vegas, NV

The assurance of mass consistency in constructing 3-D atmospheric velocity fields is important when developing accurate numerical simulations. The implementation of a mass consistent wind field is typically undertaken using available meteorological data obtained from instrumented towers and remote sensors. In this study, two methods are presented and compared for constructing 3-D mass ...

3D Finite Element Models of Ground Deformation and Stress Field in a Viscoelastic Medium

D. Scandura1,2, G. Currenti1, and C. Del Negro1
1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy
2Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy

A 3D finite element model was used to evaluate the time dependent ground deformation and the stress change caused by a pressure source embedded in a viscoelastic medium. In volcanic areas, the presence of inhomo-geneous materials and high temperatures produce a lower effective viscosity of the Earth's crust which calls for consideration of the thermal regime of crustal volume surrounding the ...

Quick Search