Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Rigid Inclusion Rotation in Viscous Shear Flow

Taborda, R.1, Ornelas Marques, F.1, Bose, S.2
1 Dep. Geologia and LATTEX, Fac. Ciências, Univ. Lisboa, Lisbon, Portugal
2 GEOMODELS and CGUL, Fac. Ciências, Univ. Lisboa, Lisbon, Portugal

Theoretical and experimental studies on the rotation of rigid inclusions under simple shear flow have typically considered infinite width shear zones and perfect attachment of inclusion to the matrix. According to these models, during progressive simple shear a coherent object would continuously rotate synthetically, which is not the case in many natural ductile shear zones. In this work we ...

A Mass-consistent Atmospheric Model using FEMLAB Optimization

Wang, X., Pepper, D.W.
University of Nevada, Las Vegas, Department of Mechanical Engineering, Las Vegas, NV

The assurance of mass consistency in constructing 3-D atmospheric velocity fields is important when developing accurate numerical simulations. The implementation of a mass consistent wind field is typically undertaken using available meteorological data obtained from instrumented towers and remote sensors. In this study, two methods are presented and compared for constructing 3-D mass ...

Modeling Geophysical Fluid Flows Using COMSOL: Working Towards a Hydrodynamic Model of the Chesapeake Bay

M. Boe, R. Malek-Madani, D. R. Smith, and M. E. C. Vieira
United States Naval Academy, Annapolis, MD, USA

The outline for this presentation is:Chesapeake Bay BasicsMathematical FrameworkLinear Western Intensification Models -Stommel (1948), Munk (1950)Non-linear equations solved in rectangular geometriesThree-dimensional Chesapeake Bay bathymetry attempts

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

Lava Tubes at Shallow Depth

M. Di Bari, and G. Zito
University of Bari, Italy

Many theoretical studies concerning lava tubes focus on the thermal disturbances generated on the earth surface. Recently a solution was suggested, where a lava tube located at a great depth h in the soil, where the ratio between h to the major axis of the ellipse a is higher than 10. However, lava tubes more frequently are located at shallower depths.  In this work we ...

Matching 4D Porous Media Fluid Flow GeoPET Data With COMSOL Multiphysics Simulation Results

J. Lippmann-Pipke, J. Kulenkampff, G. Marion, and M. Richter
Helmholtz-Zentrum Dresden
Rossendorf, Institut of Radiochemistry
Research Site Leipzig
Reactive Transport Division
Leipzig, Germany

We apply COMSOL Multiphysics for reproducing our experimental observations of fluid flow and transport processes in geological media. Our experimental GeoEPT-method allows the 4D monitoring of transport processes in geological material on laboratory scale. Explicitly we import “realistic structures” from geologic samples scanned by means of computer tomography (CT) as stl-files into COMSOL ...

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent treatment of the generated gases or liquids. Of all the decontamination methods, bioremediation appears to be the ...

Computation of the Longitudinal Dispersion Coefficient in an Adsorbing Porous Medium Using Homogenization

A. Rijnks[1], M. Darwish[2], and H. Bruining[3]
[1]StatoilHydro ASA, Bergen, Norway
[2]Shell Exploration & Production International Centre, Rijswijk,
The Netherlands
[3]Section of Geoengineering, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, The Netherlands

The method to derive upscaled expressions for the dispersion coefficients for reactive flow in a porous medium uses a periodic unit cell (PUC), which consists for instance of a spherical grain in a cube, but nothing prohibits defining more complex PUC's. Homogenization leads to a coupled system of equations where the flow is described by Stokes equation and the concentration fluctuation is ...

3D Finite Element Models of Ground Deformation and Stress Field in a Viscoelastic Medium

D. Scandura1,2, G. Currenti1, and C. Del Negro1
1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy
2Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy

A 3D finite element model was used to evaluate the time dependent ground deformation and the stress change caused by a pressure source embedded in a viscoelastic medium. In volcanic areas, the presence of inhomo-geneous materials and high temperatures produce a lower effective viscosity of the Earth's crust which calls for consideration of the thermal regime of crustal volume surrounding the ...

Quick Search