Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Design and Analysis of MEMS-based direct methanol fuel cell

Z. Yuan
Harbin Institute of Technology, Harbin, China

In this presentation, “Design and Analysis of MEMS-based direct methanol fuel cell,” there are three main model parts, two-dimensional two-phase mass transport model, μdmfc three-dimensional model and a novel cathode model. First, a two-dimensional two-phase mass transport model was established. In this model, the process of gas-liquid transfer and electrochemical reaction within the μ ...

COMSOL Multiphysics for the Designs and Applications on Biomicrofluidic Chips

I-Fang Cheng[1]
[1]National Nano Device Laboratories (NDL), National Applied Research Laboratories, Taipei, Taiwan

Some types of rare pathogens can be detected and identified in human blood through a low-cost and label-free method. The On-Chip SESR identification process has a fast detection time (about 5 minutes) and a low detection limit. Discrimination of a species is done by sorting red blood cells from bacteria. Simulations of dielectrophoretic (DEP) force, dual layer electrodes, and dynamic separation ...

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Surface Acoustic Wave Properties (SAW) and Acoustic Streaming Characterization for Annular and Curved Electrodes on 128˚ Y-Cut, X-Propagating LiNbO3

G. Potter[1], N. Tokranova[1], S. Gattu[1], J. Castracane[1]
[1]SUNY College of Nanoscale Science and Engineering, Albany, NY, USA

Microfluidic devices and lab-on-a-chip (LOC) require the ability to transport or pump reagents or reaction products, the ability to effectively mix small volumes of fluid, and provide direct data display. Surface acoustic wave (SAW) driven acoustic streaming generated by a piezoelectric material represents a developing solution to many of the demands of these devices with advantages over other ...

Modeling of Directional Dependence in Nanowire Flow Sensor - new

A. Piyadasa[1,3], P. Gao[1,2,3]
[1]Department of Physics, University of Connecticut, Storrs, CT, USA
[2]Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
[3]Institute of Materials Sciences, University of Connecticut, Storrs, CT, USA

3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS Module for COMSOL Multiphysics® software. Change in resistivity tensor due to induced stress in the nanowire ...