Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electromagnetic simulations of Goubau transmission lines with FEMLAB

Akalin, T.
IEMN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, USTL Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

The BioMEMS (Bio-Electro-Mechanical Systems) have become of considerable interest because they constitute a converging solution for many pluridisciplinary studies. The different covered fields are the biology (single cell, proteins, enzymes, neurons…), the chemistry (polymers), microelectronics and the microtechnologies associated with. Devices whose aim is the study of biological entities are ...

Design and Analysis of MEMS-based direct methanol fuel cell

Z. Yuan
Harbin Institute of Technology, Harbin, China

In this presentation, “Design and Analysis of MEMS-based direct methanol fuel cell,” there are three main model parts, two-dimensional two-phase mass transport model, μdmfc three-dimensional model and a novel cathode model. First, a two-dimensional two-phase mass transport model was established. In this model, the process of gas-liquid transfer and electrochemical reaction within the ...

Platform Isolation Using Out-of-Plane Complaint Mechanisms

A. Arevalo[1], E. Rawashdeh[1], I. G. Foulds[2]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then presented in order to evaluate the feasibility of building it using commonly used materials in MEMS. Our ...

Multiphysics System Simulation for MEMS Inertial Sensors

R. Sattler
University of Applied Sciences, Regensburg, Germany

This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of the sensor can be considered in a finite element model. The mechanical mode shapes of this model form the ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

Modeling and Simulation of Dual Application Capacitive MEMS Sensor

A. Ravi[1], R. Krishna[1], J. Christen[1]
[1]Arizona State University, Tempe, AZ, USA

Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first designed and simulated to work as a CMUT operating at about 5 MHz frequency. The device can also function as a ...

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

E. Rawashdeh[1], A. Arevalo[1], D. Castro[1], I. G. Foulds[2], N. Dechev[3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, Okanagan Campus, The University of BC, Vancouver, BC, Canada
[3]University of Victoria, Victoria, BC, Canada

In this work we present the simulation of a micro-scale large displacement compliant mechanism called the Tsang suspension. It consists of a flat micro-plate anchored down by two springs on either side, that can rotate out-of-plane and maintain its vertical assembly by a simple single-axis actuation. COMSOL Mutliphysics® software was used to simulate these devices and extract the reaction forces ...

Simulation of Unidirectional Interdigital Transducers in SAW Devices using COMSOL Multiphysics

D. Pradeep, N. Krishnan, and H. Nemade
Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, India

Surface acoustic wave (SAW) devices based on Rayleigh wave, shear wave, love wave, acoustic plate mode (APM) wave and flexural plate wave have been explored for sensors, actuators and telecommunication applications. An interdigital transducer (IDT) is a metallic comb-like structure fabricated over piezoelectric substrate. SAWs are generated over the substrate by applying electrical signal to the ...

2D Simulation of Cardiac Tissue

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce ...

MEMS Acoustic Pixel

A. Arevalo[1], I. G. Foulds[2]
[1]King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2]The University of British Columbia, Vancouver, BC, Canada

A COMSOL Multiphysics® simulation was used to simulate the behavior of a micro-membrane (Acoustic Pixel) to be used as a potential acoustic transducer. The MEMS and Piezoelectric devices interfaces were used to simulate such transducer. A four-cantilever spring configuration is initially proposed. Each cantilever has a width of 30 µm and are connected to a central circular plate with a radius ...

Quick Search