See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The model proposed by Schneider et al., for polymers is herein adapted in order to assess its suitability in elucidating the thixotropic behavior of aluminum alloys. The COMSOL Multiphysics program is employed to solve the inherent coupled mathematical problem, consisting in the ... Read More
In this paper the heat transfer module in COMSOL is utilized to simulate internal heating of an Avalanche Photodiode due to light-induced current through a resistivity that depends on charge carrier concentrations in the device. Initial tests are done by modeling the heating process on a ... Read More
The aim of this paper is to study the effect of geometrical optimization of an array configuration for a unimorph piezoelectric cantilever element. The process involves connecting a previously optimized unimorph piezoelectric cantilever in a two-element array, then in a three-element ... Read More
This paper aims to demonstrate the simulation of photoacoustic signals using FEM software. The Acoustics Module of the software COMSOL Multiphysics is used to calculate the response of a differential Helmholtz resonator cell. In a second part a preliminary result obtained with the ... Read More
Pressure-driven air flow is directed over the microfluidic cavity induces circulating fluid motion in the cavity. Analyte contained in the air stream is absorbed into the cavity, mixes with the nanoparticles as a result of the circulating cavity flow. Therefore, the nanoparticles ... Read More
Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a ... Read More
The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. In this work the possibility of assessing nondestructively the stress status in metal sheets, by using the acoustoelastic effect, is ... Read More
YBCO Coated Conductors (CCs), used for applications in Resistive Superconducting Fault Current Limiters (RSFCLs), are known to have insufficiently high Normal Zone Propagation Velocity (NZPV) during quench events. The improvement can be made by enhancing the thermal conductivity of YBCO ... Read More
Three-dimensional finite element (FE) modeling of magnetic flux leakage (MFL) technique has been performed using COMSOL 3.4 for prediction of leakage fields from surface and sub-surface defects in a 12 mm thick carbon steel plate. The tangential and normal components of leakage fields ... Read More
The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, ... Read More