Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three Dimensional Bioventing Model

Barakat, E.A., Zytner, R.G.
School of Engineering, University of Guelph, Guelph, Ontario, Canada

Bioventing (BV) is a popular in situ technology for the treatment of petroleum hydrocarbon contaminated soil. Generally, the process involves the stimulation of the native microorganisms by adding nutrients and oxygen to the contaminated soil in the vadose zone. BV can address tailing, where ineffective treatment through mass transfer limitations keeps the contamination level above the regulatory ...

A finite–element simulation study of the complex effective permittivity of two-phase random composite materials

Brosseau, C.
Laboratoire d'Electronique et Systèmes de Télécommunications, Université de Bretagne Occidentale, Brest, France

In the current work we introduce a finite-element method (FEM) for calculating the effective permittivity of macroscopically inhomogeneous media. Specifically, we consider two-dimensional (2d) two-phase heterostructures consisting of hard circular disk equilibrated distributions. The hard-disk distribution has been chosen as the reference system since it is one of the simplest idealized models ...

Opto-Asic, Photonische Kristalle

Ricklefs, U., Luo, H.
FH Giessen-Friedberg, FB EI

Mit FEMLAB 2.x und 3.1 wurden Voruntersuchungen zu zwei Anwendungen versucht. Im ersten Projekt sollte die Möglichkeit geklärt werden, FEMLAB für die Verhaltenssimulation integrierter ASIC-Photodioden einzusetzen und in der zweiten Anwendung sollten spezielle photonische Kristalle untersucht werden.

Study of the Metastable Pitting of Stainless Steels by Computer Simulations

Malki, B., Baroux, B.
LTPCM/INPG Grenoble, France

Modelling of pit chemistry in applied polarization mode is carried out using finite element method techniques (FEM). The results lead to the formulation of critical conditions for pit stabilization in terms of pit geometry and applied potential. More detailed computing is performed to compare the stability behaviour of both ferritic AISI 430 and austenitic AISI 304 stainless steels. The ...

Heat Transfer During a CW Laser Crystallisation Process of a Silicon Thin Film on a Glass Substrate

Bourouga, B.1, Le Meur, G.1, Garnier, B.1, Michaud, J.F.2, Mohammed-Brahim, T.2
1 Laboratoire de Thermocinétique de Nantes
2 IETR – Groupe de Microélectronique-Université Rennes I

Development of new handling microsystems needs integration of field effect thin film transistors made directly on various low temperature substrates, as glass for example, with other functions. Argon laser is used to melt completely and then to crystallize 400 nm thick amorphous silicon films. However, the implementation of this process generates cracking and destruction of the silicon thin film ...

Electromagnetic simulations of Goubau transmission lines with FEMLAB

Akalin, T.
IEMN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, USTL Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

The BioMEMS (Bio-Electro-Mechanical Systems) have become of considerable interest because they constitute a converging solution for many pluridisciplinary studies. The different covered fields are the biology (single cell, proteins, enzymes, neurons…), the chemistry (polymers), microelectronics and the microtechnologies associated with. Devices whose aim is the study of biological entities are ...

Computations on the coupled heat and mass transfer during fires in bulk materials, coal deposits and waste dumps

Krause, U., Schmidt, M., Lohrer, C.
Federal Institute for Materials Research and Testing (BAM), Division II.2 “Reactive Substances and systems”, Berlin, Germany

In porous combustible matter low-rate oxidation takes place at ambient conditions. In large stockpiles of bulk goods, coal heaps, waste dumps etc. it may occur that the heat released by the oxidation reaction is not fully transmitted to the surroundings but raises the temperature within the deposit. This triggers a positive feed-back loop since the oxidation rate increases with temperature. The ...

A multiphysics approach of the styrene free radical polymerization modeling performed in different microreactors

Serra, C., Sary, N., Schlatter, G.
LIPHT-CNRS UMR 7165, ECPM-ULP Strasbourg

This paper investigates the modeling of styrene free radical polymerization in two different types of microreactor for which the wall temperature is kept constant. The simulations are performed with the help of FEMLAB 3.1 to solve simultaneously partial differential equations resulting from the hydrodynamics, thermal and mass transfer (convection, diffusion and chemical reaction). The ...

Simulation der elektrischen Feldverteilungen im elektrischen Rasterkraftmikroskop

Müller, F, Hietschold, M - Institut für Physik Analytik an Festkörperoberflächen (AFKO)

Sensitivity distribution field of electrical impedance tomography

Oh, S., Sadleir, R.
Department of Biomedical Engineering, University of Florida

Electrical Impedance Tomography (EIT) is a method for forming cross-sectional maps of impedance in an object of interest from external four electrode measurements. EIT reconstruction techniques make assumptions about geometry of the conductor and the electrodes. As a consequence, EIT methods that seek to reconstruct absolute impedance have a high sensitivity to errors in assumed boundary shape, ...

Quick Search

2681 - 2690 of 3645 First | < Previous | Next > | Last