Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multibody Contact Analysis of an Rzeppa CV-Joint

L. Armellin[1], F. Gatelli[1], and G. Tanghetti[1]

[1]R&D Department, Metelli S.p.A., Cologne, BS, Italy

Ball joints are widely used in many applications. This paper describes the contact and kinematic analysis of an Rzeppa type constant-velocity joint (CV-joint). Starting from a conveniently simplified 3D model, at fixed joint angle of 45°, a CV-joint made of all “generic steel” components has been studied. Considering only a “perfect” geometry (i.e. not affected by ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

Coupling Miscible Flow and Geochemistry for Carbon Dioxide Flooding into North Sea Chalk Reservoir

B. Niu[1], W. Yan[1], A.A. Shapiro[1], and E.H. Stenby[1]

[1]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

As an effective method to cope with green-house gas emission, and to enhance oil recovery, injection of carbon dioxide into oil reservoirs has obtained increasing attentions. The flooding process involves complex phase behavior among oil, brine and CO2, and geochemical reaction between CO2 and rock. COMSOL Multiphysics® was first applied to simulating two flooding processes with known ...

Modelling Waste Water Flow in Hollow Fibre Filters

I. Borsi[1] and A. Fasano[1]
[1]Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy

In this paper we present a model to describe the process of waste water filtration based on hollow-fibre membrane filters. In particular, we deal with membranes whose pores diameter is in the range 0.01-0.1 µm. The main problem in these filtering systems is the membrane fouling. The mathematical model consists in two equations for the Darcy's flow through the filter, coupled with an ...

Measuring and Calculation of Positive Corona Currents Using COMSOL Multiphysics®

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

The sensor type developed by Gunytronic uses corona discharge for measuring flow rates in exhaust streams of automotives, aircrafts and industrial plants. This paper will present the development of testing equipment used in laboratory for investigating physical relations on corona currents, charged particle transport, the calculation of the collateral electric fields and high potentials. This ...

Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy

R.F. Hamou[1], P.U. Biedermann[1], A. Erbe[1], and M. Rohwerder[1]
[1]Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

A computational method is developed to study probing the electric double layer by Scanning Electrochemical Potential Microscopy. The model is based on a modified Poisson- Boltzmann equation, which takes into account steric effects. We investigated the effect of metallic apex protrusion and the Open Circuit Potential (OCP) of the tip on the probed potential. A clear electrostatic screening effect ...

The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets

R.M.G. Ferrari[1]
[1]Danieli Automation S.p.A., Buttrio, UD, Italy

The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. In this work the possibility of assessing nondestructively the stress status in metal sheets, by using the acoustoelastic effect, is investigated. As the effect turns out to be very small for practical values of applied stress, the proposed technique ...

Mathematical Model of Blood Flow in Carotid Bifurcation

E. Muraca[1], V. Gramigna[1], and G. Fragomeni[1]
[1]Department of Experimental Medicine and Clinic, Magna Graecia University of Catanzaro, Catanzaro, Italy

The goal of this research is to provide the medical staff with a numerical system assessment of wall shear stress in carotid bifurcation. Through this model, it will be fundamental to investigate the stress state properties of the surface in contact between the plaque and the artery, and study the geometric relationship between the bifurcation angle and fluid structural properties. The formation ...

3D Simulation of the Thermal Response Test in a U-tube Borehole Heat Exchanger

L. Schiavi[1]

[1]Dipartimento di Ingegneria Industriale, Università di Parma, Parma, Italy

Simulated Thermal Response Test (TRT) data are analyzed in order to evaluate the effect of the tridimensionality model’s feature in determining the proper value of the soil thermal conductivity and borehole thermal resistance. The 3D system’s simulation during the TRT is realized by adopting the finite element method. The comparison of the numerical results with the analytical ...

Hyperbolic Heat Transfer Equation for Radiofrequency Heating: Comparison between Analytical and COMSOL Solutions

V. Romero-García[1], M. Trujillo[2], M.J. Rivera[2], J.A. López Molina[2], and E.J. Berjano[3]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]Dpto. Matemática Aplicada, Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[3]Institute for Research and Innovation on Bioengineering, Universidad Politécnica de Valencia, Valencia, Spain

The Radiofrequency Heating (RFH) is widely employed to heat biological tissue in different surgical procedures. Most models analyze the RFH employing a Parabolic Heat Transfer Equation (PHTE) based on Fourier's theory. The PHTE can be used for problems involving long heating times or low thermal gradients. However, when the problem involves short heating times or extreme thermal gradients it is ...

Quick Search