# COMSOL Blog

## Reaching New Heights in Pole Vaulting: A Multibody Analysis

##### Mateusz Stec | February 4, 2016

Pole vaulting is one of the most difficult events to master in track and field. Athletes must be able to run fast, be strong enough to elevate their body by holding the pole, and have excellent body control in order to change position while airborne. Analyzing the science behind this sport offers greater insight into the mechanisms that ensure success.

### How to Obtain Fatigue Model Parameters

##### Mateusz Stec | December 26, 2014

When simulating fatigue, you are faced with two main challenges. The first is to select a suitable fatigue model for your application and the second is to obtain the material data for the selected model. I recently addressed the first challenge in the blog post “Which Fatigue Model Should I Choose?“. Today, I will address the second challenge and discuss how you can obtain fatigue model parameters.

### Which Fatigue Model Should I Choose?

##### Mateusz Stec | November 25, 2014

The most frequent question we get regarding the Fatigue Module is “Which fatigue model should I use in my simulations?” There is no straight answer to this question, since fatigue is not based on an exact differential equation, but on engineering observations that lead to different physical models. The applicability of each model can depend on factors such as material and loading type. Today, I will discuss different approaches for fatigue model selection and the applicability of the different models.

### Modeling Thermal Fatigue in Nonlinear Materials

##### Mateusz Stec | May 1, 2014

Engineers simulating fatigue in nonlinear materials are faced with two challenges. You must correctly represent the material behavior with a constitutive relation and find a fatigue model that captures the life-controlling mechanism. Both challenges require a thorough material knowledge. Today, we will address these challenges when modeling thermal fatigue in nonlinear materials.

### Submodeling: How to Analyze Local Effects in Large Models

##### Mateusz Stec | January 1, 2014

Computer aided engineering (CAE) helps us understand how mechanical systems work before they are physically realized. In order to properly reflect the reality, we continuously increase the modeling complexity when we simulate, validate, or optimize our applications. A simple technique to improve a model is to increase the number of finite elements that in turn create more evaluation points. The hardware and simulation time, however, may limit the size of the model, and other solutions are necessary — such as […]

### Fatigue Prediction Using Critical Plane Methods

##### Mateusz Stec | July 22, 2013

Research on fatigue started in the 19th century, initiated following failing railroad axles that caused train accidents. In a rotating axle, stress varies from tension to compression and back to tension in one revolution. The load history is simple because it is uniaxial and proportional. Fatigue can then be evaluated with the S-N curve, also known as the Wöhler curve, which relates stress amplitude to a component’s life. In many applications we deal with multiaxiality and non-proportional loading. In this […]

#### Categories

##### Mateusz Stec | May 30, 2013

In many applications, loads applied to structures are random in nature. The sampling results of the structural response will differ depending on the data collection time. Although the stress experienced is not always high, the repeated loading and unloading can lead to fatigue. The engineering challenges in these types of applications are defining the stress response to the random load history in the critical points, and predicting fatigue damage. This is simulated with the Cumulative Damage feature in the Fatigue […]