Chemical Reaction Engineering

Fanny Littmarck | March 1, 2013

In chemical reaction engineering, simulations are useful for investigating and optimizing a particular reaction process or system. Modeling chemical reactions helps engineers virtually understand the chemistry, optimal size and design of the system, and how it interacts with other physics that may come into play. This is the first of a series of blog posts on chemical reaction engineering, and here we will have a look at the initial stages of modeling the application: the chemical reaction kinetics.

Read more ⇢
Fanny Littmarck | February 1, 2013

Microbubbles filled with oxygen can be injected into contaminated lakes to restore the water quality. Typically, water is purified via water-treatment plants, but this microbubble technique is both inexpensive and more environmentally-friendly in comparison. As seen in a COMSOL News 2011 article, oxygen microbubbles are a researcher’s way of copying nature’s own self-restoration mechanism for cleaning contaminated lakes.

Read more ⇢
Fanny Littmarck | November 9, 2012

A mixer that doesn’t move may sound like an oxymoron, but it’s not. Used in various chemical species transport applications, static mixers are inexpensive, accurate, and versatile. Still, there is always room for improvement. Optimizing the design of static mixers calls for computer modeling, but traditional CFD methods may not be the best way to model these mixers. How do these motionless mixers work and how can their performance be simulated?

Read more ⇢
Phil Kinnane | May 21, 2012

I was just reading one of my favorite sites, phys.org, about the difficulties of working with nanostructures. In the world of batteries, you want to maximize charge, while minimizing volume and weight. This means that the nano-world is starting to take hold, but, as has been discovered with many other applications where nanotechnology is being applied, it is very difficult to control the material properties in this world.

Read more ⇢