See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The overall goal of this work is the use of COMSOL Multiphysics® in the modeling of the current density distributions for the electrodeposition of aluminum coatings from ionic liquids. The local current distribution is strongly dependant on the conductivity and on the geometry of the ... Read More
This paper describes the numerical modeling of a key material-stability issue within the realm of Molten Carbonate Fuel Cells (MCFC). The model describes the morphological and attending electrocatalytic evolution of porous NiO electrodes and is apt to predict electrochemical observables ... Read More
Using COMSOL Multiphysics 3.5, a numerical model has been developed to determine the effect of the channel geometry and electrode configuration on cell performance based on polarization curves. The Butler-Volmer equation was implemented to determine the reaction rates at the electrodes. ... Read More
The existing lithium ion battery model in COMSOL’s Multiphysics software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in ... Read More
Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the ... Read More
A computational method is developed to study probing the electric double layer by Scanning Electrochemical Potential Microscopy. The model is based on a modified Poisson- Boltzmann equation, which takes into account steric effects. We investigated the effect of metallic apex protrusion ... Read More
The proton exchange membrane is a key component in the currently widely studied Proton Exchange Membrane Fuel Cells. In this paper a fully coupled three-dimensional dynamic numerical model of the membrane including all the physically relevant phenomena, i.e. ion transport, hydration ... Read More
Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the ... Read More
Direct borohydride fuel cells (DBFCs) use sodium borohydride (NaBH4) as fuel and hydrogen peroxide (H2O2) as an oxidant. A mathematical model encompassing mass balance of ionic species in different regions of the DBFC is developed. Both the oxidation of sodium borohydride and ... Read More
Over time, rechargeable batteries degrade and eventually stop working. You see some combination of declining capacity, rapid self-discharge, and reduced power. Degradation mode depends on battery design, but also on the application. Often, multiple physical processes contribute to ... Read More