See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk ... Read More
As gas turbine temperatures and component life requirements continue to rise, it becomes increasingly important to have a good understanding of the operating temperatures of their components. The objective of this study was to explorate whether a Hiemenz flow approximation based on ... Read More
In many groundwater studies, the areal extent of an aquifer is much larger than its thickness so that flow and transport take place primarily in horizontal directions. Thus, the most common type of modeling in practical applications is two-dimensional involving vertically averaged ... Read More
A numerical multiphase flow model is proposed to predict the behavior and motion of entrained inclusions in liquid steel, as they enter the orifice of a LiMCA (Liquid Metal Cleanliness Analyzer) sensor for assuring steel quality. The method of measurement is based on the electric sensing ... Read More
The frequency dependent electrical impedance of porous media is studied by modelling the charge transport in the electrolyte filled pore space using COMSOL Multiphysics. The corresponding experimental method, called Spectral Induced Polarization (or Impedance Spectroscopy), shows a ... Read More
A new type of radiator with a package of combs, to gain a larger area for heat exchange, instead of trapezoidal convector plates, is investigated. The main aim is to find the optimal comb diameter. To solve this problem, CFD (computational fluid dynamics) with COMSOL Multiphysics is ... Read More
Many scientific instruments are based on high vacuum equipment with a gas pressure maintained in the order of 1 Pa or below. The gas flow in the low pressure limit, called the molecular flow regime, is a case of transport with zero viscosity. The ability to solve an integral equation on ... Read More
Various types of equation system formulations for modeling two-phase flow in porous media using the finite element method have been investigated. These allow for equation manipulation such that the main differences between the formulations are the dependent variables that are solved ... Read More
Vortex-induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding. In this paper, COMSOL Multiphysics is applied to study the flow pattern around submarine pipeline spans, and ... Read More
CO2 capture and storage constitutes a promising solution to control and reduce these emissions. Wellbore integrity is a key challenge to ensure long term safety and for public acceptance. For this objective, a two-phase flow model in porous media based on Darcy’s law has been proposed to ... Read More