See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Read More
In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip ... Read More
Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first ... Read More
Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very ... Read More
The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a ... Read More
The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the ... Read More
In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with ... Read More
A high performance MEMS Pirani sensor (VAC_03) was designed and optimized based on analytics. Due to the fact that this MEMS Pirani sensor is a 3D-Object, the calculation of the thermal radiation by analytics is limited. As the radiation behavior in the system is, beside the solid ... Read More
The possibility to dispose of two-dimensional (2D) approaches to problems originally posed in a three-dimensional (3D) geometry is always desirable since it reduces significantly the computing resources needed for numerical studies. In this work we report on a new 2D approach called ... Read More
Surface plasmon resonance in metallic nanoparticles is highly and shape dependent, which enables varius applications in photovoltaics, photonics, sensing and even medicine. Particularly we observe redshift in plasmon resonance with increasing nanoparticle size. We investigate ... Read More