See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Multiphysicsx

Mechanistic Understanding of Food Microbiological Safety: Multiphase Transport Through a Leaf Stomate During Vacuum Cooling

M. Ranjbaran [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

Vacuum cooling is a common unit operation in the leafy greens industry and is considered as a very efficient approach to extend the shelf-life of fresh produce. However, during this popular process, bacteria can internalize into the produce. This emphasizes the need for better ... Read More

Simulating Survival and Insulin Secretion in Pancreatic Islet Tissue Constructs

E. Han [1], L. E. Niklason [1],
[1] Department of Biomedical Engineering, Yale University, New Haven, CT, USA

Type I diabetes results from the autoimmune destruction of pancreatic islets and is a growing and cost intensive chronic health problem throughout the world. Monitoring blood sugar levels and recurrent intervention with exogenous insulin allows many patients to lead relatively normal ... Read More

Flotation Height in 'Air Hockey' Spatial Atomic Layer Deposition

J. Grasso [1], B. Willis [1],
[1] Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA

Atomic layer deposition(ALD) is one proven method to deposit ultra-thin films. ALD is advantageous for its atomic-level thickness control and conformity; leading to high quality films. Slow deposition rates for conventional ALD contribute to the impracticality of utilization of this ... Read More

Simulation of Magnetically Driven Peristaltic Pumps for Microfluidic Applications

L. Gritter [1], J. Crompton [1], K. Koppenhoefer [1], P. Nath [2]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Applied Modern Physics, Los Alamos National Lab, Los Alamos, NM, USA

Microfluidic technologies can enable laboratory processes to be packaged in miniaturized and automated systems, allowing these processes to be performed with hand-held devices outside a laboratory environment. The practical usefulness of these “lab on a chip” systems has often been ... Read More

Multiphysics Modeling & Digital Twins

This presentation summarizes the digital twin (DT) concept and how it can be implemented in COMSOL Multiphysics®. Concepts such as real and virtual spaces, high-fidelity models, and lightweight models are explained in the context of DTs. Read More

Thermal analysis of a spent fuel transportation cask

P. Goyal[1], V. Verma[1], R. K. Singh[1], and A. K. Ghosh[1]
[1]Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Spent fuel transportation casks are required to meet among others (test conditions), the regulatory thermal test conditions in order to demonstrate their ability to withstand specified accidental fire conditions during transport. This paper describes the transient thermal analysis ... Read More

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number ... Read More

Solving Two-scale Transport Laws During Frying of Foods Using COMSOL Multiphysics

J. Maneerote, and P.S. Takhar
International Center for Food Industry Excellence Texas Tech University, Lubbock, TX, USA

Microscale comprised of the scale of food biopolymers at which biochemical reactions and textural changes take place, and the macroscale was the scale of interaction of polymers with surrounding water, vapor and oil phases. Numerous novel equations such as generalized Darcy’s law based ... Read More

Stress Analysis of an Electromagnetic Horn

B. Lepers
IPHC
Université de Strasbourg
Strasbourg, France

An electromagnetic horn is a device used in particle physics to produce a strong pulsed toroidal magnetic field and to focus charged particles toward a detector. A multiphysics analysis is performed to assess the stress level inside the horn structure. In steady state regime, the horn ... Read More

Phase-sensitive Microcalorimetry for Study of Low-level Radioactive Sources

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Microcalorimetry for standardizing activities of radionuclide samples entails measurements of input power heat flow from the sample cell, with the radioactive sample compared to the reference cell under balanced conditions. The measurement is susceptible to noise due to drift and 1/f ... Read More