See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Rotaxanes are a class of molecules recently developed in laboratory that have been heralded as possible molecular motors. The motor is constituted by a linear molecule (thread) and a ring-shaped molecule (macrocycle), which is free to move along the thread, switching between two, or ... Read More
The current paper focuses on the creation of a consistent environment for the numerical prediction of the physical properties of polymer composite. A limitation factor for the successful simulation of composite processes is the correct estimation of the effective properties depending on ... Read More
In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary ... Read More
Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate ... Read More
A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve ... Read More
In this work, an electrostatic diaphragm micropump is investigated by means of COMSOL Multiphysics®. A fluid-dynamic model is adopted to evaluate the fluid flow characteristics inside the pumping chamber, in static conditions. In parallel, electromechanical quasi-static simulations ... Read More
In this paper, after a brief presentation of our company, we will detail our technology and the importance of the simulation step. In the same time, we will describe different levels of FEA (Finite Element Analysis) we have followed and we will conclude on the best balance, for our ... Read More
We have simulated the copper ion concentration and internal electric field profiles in a dielectric material by solving the transient continuity/Poisson equations using COMSOL Multiphysics. We have shown that failure of dielectrics can be modeled if we assume that failure in Cu/SiO2/Si ... Read More
Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and ... Read More
An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than ... Read More
