See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Study of interaction of drops and bubbles with electric field is important for understanding the physics involved in various physical phenomenas and industrial processes. Important applications arise in colloidal systems (Miller and Scriven, 1970), meteorology and cloud physics (Sartor, ... Read More
The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation ... Read More
Electromagnetic Forming (EMF) is a promising and relatively new manufacturing technology having significant advantages over conventional forming processes. A primary characteristic of this process is use of noncontact electromagnetic forces to achieve forming and shaping of various ... Read More
A novel mechanism for the carbothermal reduction of Ilmenite is proposed and validated with the help of a comprehensive mathematical model. A time-dependent isothermal pellet-grain model is used to simulate the kinetic behaviour of a spherical pellet of ilmenite (FeTiO3) in CO/CO2 ... Read More
In this paper, detail magnetostructural analysis of fusion grade superconducting toroidal field coils that are used in ‘tokamaks’ is presented. The stresses that arise due to Lorentz forces in large size superconducting coils that carry high currents are of catastrophic type in nature. ... Read More
Spent fuel transportation casks are required to meet among others (test conditions), the regulatory thermal test conditions in order to demonstrate their ability to withstand specified accidental fire conditions during transport. This paper describes the transient thermal analysis ... Read More
The effects of electric fields on combustion flames have been studied by using several types of experimental techniques as well as few numerical methods. The flame is influenced by the electric field mainly due to the charges present as a result of chemical reactions that take place in ... Read More
Carbon nanotube FETs are generating much interest in the nanoscale electronics area. Typically subthreshold behavior in these devices has been modeled using the Laplace equation. Above threshold behavior uses self-consistent solutions to the Poisson and continuity equations. Accurate ... Read More
Finite Element analysis is used to model 2-D and 3-D paraelectric-dielectric composites (BaTiO3 spherical fillers randomly distributed in constant dielectric matrix). The effective dielectric response and tunability are studied under different filler sizes and different volume fractions. ... Read More
Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power ... Read More