Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Evaluation of Internal Resistance and Power Loss in Micro Thermoelectric Generators (µTEGs)

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

One of the major challenges in designing µTEGs is to minimize power loss due to internal resistance (r) of Thermoelectric (TE) materials. To solve this problem we have performed simulation analysis and calculated the internal resistance of eight different TE materials. The internal resistances of these TE materials were then compared to the power generated across the copper electrode as seen in ...

Cancer Detection Using Coagulation Therapy with Coaxial Antenna - new

S. M. Ali[1], A. K. Jha[1], S. Mahapatra[1], M. Panigrahi[1]
[1]Trident Academy of Technology, Bhubaneswar, Odisha, India

Nearly seven lakh Indians die of cancer, while over 10 lakh are newly diagnosed with some form of the disease every year. Surgical resection is not always feasible in patients with hepatocellular carcinoma. Microwave Coagulation Therapy (MCT) has been used as an alternative to resection and its efficiency has been evaluated in tissue microwave irradiation from a dipole antenna causes water ...

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are promising UV sources for the future, provided the coupling between their power supply is optimized. The model ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
MIT
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Modal Characterization of the Plasmonic Slot Waveguide Using COMSOL Multiphysics

F. Frezza[1], P. Nocito[2], and E. Stoja[1]
[1]Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
[2]MISE, Communication Department, ISCOM, Rome, Italy

We investigate and compare the characteristics of the fundamental guided mode sustained by a subwavelength plasmonic slot waveguide for three types of metals: gold, silver and aluminium. This is done in terms of mode effective index, propagation length, confinement and, as the mode under study is quasi-TEM, we also develop a transmission line model that can be useful in the design of optical ...

A Novel Wavelength Detection Method Based on Wavelength Absorption in Silicon

K. Zhang [1], Y. Audet [1],
[1] École Polytechnique de Montréal, Montréal, QC, Canada

A new filter-less method of detecting the spectrum based on wavelength absorption in silicon is proposed. Wavelength dependent absorption coefficient produces a unique excess carrier distribution. Thus the wavelength spectral information can be obtained by measuring the photon generated electron-hole pairs as a function of depth. A model built with the COMSOL Multiphysics® software along with ...

Highly Sensitive Grating-Coupled Bloch Surface Wave Resonance Biosensor via Azimuthal Interrogation

V. Koju [1], W. M. Robertson [1],
[1] Middle Tennessee State University, Murfreesboro, TN, USA

A dielectric multilayer structure, with a grating profile on the surface layer, can couple light into a strongly confined surface wave, known as a Bloch surface wave. These surface modes can be used to design bio-sensors. The corrugated surface structure also enables azimuthal angular excitation of Bloch waves. In this paper, we exploit azimuthal interrogation to design highly sensitive Bloch ...

Surface Plasmon Polaritons Photonic Device Design and All-optical Modulation

J. Chen
Peking University, Beijing, China

Surface plasmon polaritons (SPPs), which are confined along metal-dielectric interfaces, have attracted great interest in the area of ultracompact photonic circuits due to their strong field confinement and enhancement. COMSOL Multiphysics is an efficient and powerful software package to simulate the characteristics of SPPs. In recent years, we did some works on SPPs in experiments as well as ...