See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Functionally graded materials (FGM) are those that contain chemical, phase or structural gradients. Whilst the design of functionally graded structures is well researched in areas such as shape optimisation and topology optimization, their manufacture is still in development. One ... Read More
With the ReactorSTM the relationship between surface structure and catalyst activity under industrially relevant conditions can be investigated. It enables atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry. It consists of a ... Read More
This work, which is done in the framework of the SisAl Pilot EU project, presents the use of the COMSOL Multiphysics® software for simulating an ensemble averaged electric arc in a laboratory-scale electric arc furnace. The SisAl Pilot project aims at optimising the silicon production in ... Read More
This work is aimed to demonstrate how variation of geometries' parameters would affect the fluid loading effect in water using COMSOL Multiphysics and compared with analytical data. When a structure is placed in water, the interaction between the water and the structure plays an ... Read More
Due to particle interactions, magnetic particles suspended in non-magnetic fields tend to form chains, clusters or columns under magnetic fields. The non-spherical magnetic particles in the suspension show different rheological properties compared to spherical particles. In this paper, ... Read More
From microelectronics cooling to biological analysis and wearable therapeutic infusion systems, micropumps are steadily becoming a valuable and ubiquitous tool for fluid transport and thermal management. Hence, the development of novel actuation mechanisms that allow for precise ... Read More
The aim of this paper is to optimize with COMSOL Multiphysics® simulation, the design geometry of a near field biosensor which could be used for dielectrophoretic (DEP) immobilization and simultaneous sensing of biomolecules of the order of nanometers to micrometers. COMSOL Multiphysics® ... Read More
Partial differential equations on unknown domains is a mathematical problem that arises in many applications. Several examples can be easily found in the dynamics of free surfaces in fluid dynamics or in fluid-structure interactions. In many situations, large deformations are encountered ... Read More
Energy harvesting from a fluid flow using piezoelectric materials is a relatively recent topic that has been investigated experimentally and numerically [1, 2]. Its possible application in natural water currents represents an interesting strategy to easily harvest renewable energy from ... Read More
Metal reed valves are used for flow rectification in electrohydraulic pumps driven by smart materials at high frequencies but it is difficult to predict their behavior when the surrounding fluid has considerable inertia and viscosity. Simulation of this phenomenon involves modeling the ... Read More
