See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, ... Read More
An interaction of aluminum aircraft skins with a laboratory-simulated, low-level, long-duration, continuing current representative of a natural lightning flash was modeled with COMSOL Multiphysics. For the analysis of the lightning direct effects on aircraft, the external environment is ... Read More
A wireless passive pressure sensor and the measurement system were design and simulated using COMSOL 4.3. The sensor is based on MEMS capacitor attached to a planar inductor for wireless powering and readout. An external coil is used for the measuring system. The pressure to be measured ... Read More
Micro-power generators (MPGs) harvest and store small amounts of ambient energy. The motivation of this paper is to compare the MPG modeling and simulation results obtained from COMSOL Multiphysics® with those obtained using three other approaches: CoventorWare®, ANSYS® and ... Read More
The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface ... Read More
The newly emerging field of carbon-based MEMS (C-MEMS) attempts to utilize the diverse properties of carbon to push the performance of MEMS devices beyond what is currently achievable. Our design employs a carbon-carbon composite using nano-materials to build a new class of MEMS ... Read More
For the design of an inductive power and data transfer electromagnetic calculation are carried out. A transfer system is considered for loads that are distributed across some distances. For example, such loads are adjustable speed drives that are found in factory automation and intra ... Read More
In this paper we compare the results from a bending cantilever beam experiment with the theoretical values and COMSOL finite element simulation results. In the experiment a simple cantilever beam with a hole is loaded at the end. Measurements are recorded by four strain gauges mounted on ... Read More