See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Modeling of Transport Phenomena in Gas Tungsten Arc Welding of Ni to 304 Stainless Steel

A. Bahrami[1], D. K. Aidun[1]
[1]MAE Department, Clarkson University, Potsdam, NY, USA

COMSOL Multiphysics® is used to simulate the transport phenomena in arc welding of Nickel to 304SS. Electric Currents (ec) and Magnetic Fields (mf) are used to solve for the Lorentz force which is one of the volume forces. Laminar Flow (spf) is used to simulate flow field. The Lorentz ... Read More

Investigation of a Hybrid Winding Concept for Toroidal Inductors Using 3D Finite Element Modeling

H. Schneider[1], T. Andersen[1], J. D. Mønster[1], M. P. Madsen[1], A. Knott[1], M. A. E. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built ... Read More

Modeling Magnetic Induction from Transient Events Impinging upon a Conducting Moon

H. Fuqua[1], G. Delory[1], I. de Pater[2], R. Grimm[3]
[1]University of California - Berkeley, Space Sciences Lab, Berkeley, CA, USA
[2]University of California - Berkeley, Berkeley, CA, USA
[3]Southwest Research Institute, Boulder, CO, USA

Electromagnetic sounding measurements utilize magnetic induction to constrain the interior geophysical properties of planetary bodies. Under some conditions, the Earth’s moon can be approximated by the response of a conducting sphere in a vacuum. Transient magnetic fields originating ... Read More

Simulation of Radiation Dose from Diagnostic X-ray Beams

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Direct realization of absorbed dose to water in diagnostic radiation via calorimetric methods poses many challenges since the thermal signal of interest may be less than a few microKelvin. In actual biological systems or structures, like the lung, there is the additional complication of ... Read More

Phase-sensitive Microcalorimetry for Study of Low-level Radioactive Sources

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Microcalorimetry for standardizing activities of radionuclide samples entails measurements of input power heat flow from the sample cell, with the radioactive sample compared to the reference cell under balanced conditions. The measurement is susceptible to noise due to drift and 1/f ... Read More

Numerical Analysis of Shaft Resistance and Toe Resistance of a Pile in Unsaturated Soil

E. Evgin[1], J. A. Infante Sedano[1], Z. Fu[1]
[1]University of Ottawa, Ottawa, ON, Canada

A pile transfers structural load to the ground at the surface of its shaft and at its toe. In the calculation of these two components of load, both the deformation characteristics and the strength properties of the soil are needed. In unsaturated soils, matric suction changes the stress ... Read More

Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Multiphysics®

M. Madsen[1], J. Mønster[1], A. Knott[1], M. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper describes the implementation of a complete design tool for design, analysis, optimization and production of PCB embedded inductors. The paper shows how LiveLink™ for MATLAB® and COMSOL Multiphysics® make it possible to combine the scripting and calculation power of MATLAB ... Read More

Mie Scattering of Electromagnetic Waves

J. Crompton[1], S. Yushanov[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The Mie solution to the scattering of electromagnetic waves by spherical particles has been examined using COMSOL Multiphysics®. The results assume elastic scattering only and do not include Brillouin or Raman scattering. The nature of the interaction has been considered for materials ... Read More

Analysis of Spiral Resonator Filters

J. Crompton[1], S. Yushanov[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The performance of a spiral resonator filter has been analyzed using COMSOL Multiphysics® and shown to demonstrate agreement with experimental data. A compact microstrip based spiral resonator filter with a resonant frequency of 7.2 GHz shows low insertion losses with a high level of ... Read More

Studying the Sensitivity of the Wrinkling Process to Mesh Imperfections Using COMSOL Multiphysics® and LiveLink™ for MATLAB®

S. K. Saha[1], M. L. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Wrinkles are formed on a thin film as a result of buckling-based instabilities. This can be used as an inexpensive fabrication technique for generating micro and nano scale periodic patterns. Finite element techniques are used for the predictive design of complex wrinkling patterns. As ... Read More