See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This paper highlights the use of the COMSOL Multiphysics® software during the design process of a thermal cycling system for regulated PCM phase transitioning. The primary purpose of the simulations was to predict the system behavior in response to an ON/OFF temperature control system ... Read More
Introduction: Lithospheric delamination beneath the western U.S. is believed to be the driving mechanism responsible for the evolution of magmatic and topographic features observed at the surface in the western U.S.. This process requires hot asthenosphere to be in contact with the ... Read More
For combustion simulations, the wall temperature and heat transfer is an important piece of information. Coal combustion systems typically have walls that are initially a cast ceramic, but, with time, slag is deposited on the surface and coal and soot are incorporated into the slag. It ... Read More
Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first ... Read More
Here we aim to advance geomagnetic modeling approaches using COMSOL Multiphysics® software and improve the degree of detail that can be obtained from the measured magnetic field. First, we carried out benchmark tests by comparing the computed results using the widely used analytic ... Read More
Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase ... Read More
Seals or gaskets that are compressed between walls of a container are important to many industrial applications. In this paper we present a fluid flow model for predicting the sealing performance of such seals. A computational study using COMSOL Multiphysics® software suggests very ... Read More
Thermography measurements on metallic thin films are challenging due to reflections from the environment. We present a thin "gold black" absorption layer to deal with this issue. A multiphysics model is introduced to correct the experimentally obtained data for undesirable heat transfer ... Read More
We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good ... Read More
Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat ... Read More
