See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
COMSOL Multiphysics® and the Batteries & Fuel Cells Module are used to create a pseudo 2D model of a Li-ion battery. A sensitivity analysis determines the most sensitive model parameters which are identified by microstructure analysis or optimized by nonlinear least-square regression ... Read More
High power consumption chips have already become a major challenge for modern processors causing low thermal performances. Existing thermal solutions are not able to solve these high temperature issues efficiently. Two-phase cooling devices such as heat pipes and vapor chambers have ... Read More
The LiNi0.8Mn0.1Co0.1O2/Silicon-carbon lithium ion battery is used in the plug-in electric vehicle due to its high specific energy. The mileage of electric vehicles can be improved by increasing the energy density of batteries, but the charging process becomes a more challenge issue ... Read More
In this work, a mathematical model based on porous electrode theory was developed in COMSOL Multiphysics® simulation software to simulate discharge behavior of primary Zn/MnO2 alkaline batteries. The model integrates microscopic and macroscopic phenomena through incorporation of species ... Read More
In recent years, fire and explosion accidents of mobile phones and electric vehicles are very common. If the heat generated by the battery cannot be dissipated in time will cause the battery temperature rise, or even thermal runaway. Therefore, it is necessary to decrease the heat ... Read More
Renewable energy sources such as solar and wind are intermittent in nature. Their effective utilization requires efficient, low cost energy storage systems to complement energy harnessing systems. The rechargeable flow batteries have emerged as the most suitable candidates due to their ... Read More
The all vanadium redox flow battery (VRFB) is a promising electrochemical energy storage technology with the potential to play an important role in future power grids [1]. While the common VRFB cell design is planar, a tubular cell design might display advantages as reduced sealing ... Read More
Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally ... Read More
Current and emerging energy storage devices need to be enhanced to cope with the energy and power density requirements of different applications. Electrochemical models are helpful tools for the development and redesign of existing Li-ion batteries as well as to support more innovative ... Read More
This report explores the utilization of COMSOL® to investigate material properties and perform finite element analysis in solid-state batteries. Over the years, the increase of energy density in Lithium-Ion batteries has begun to plateau. The impact of mainstream consumer electronics ... Read More
