See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The blast furnace hearth drainage constitutes a major part of the blast furnace operation. Especially, keeping track of the iron and slag levels is crucial to adapt the tapping strategy. The operational target is usually not only to empty the blast furnace as far as possible but also to ... Read More
COMSOL Multiphysics® simulation software is receiving a lot of attention in the loudspeaker industry thanks to the quality of the results it provides making it an essential tool to optimize geometries so that the best reproduction capabilities of the loudspeaker system are achieved. ... Read More
The paper illustrates the use of COMSOL (via the “Coefficient-Form PDE” option) for obtaining the relativistic quantum mechanics wave function Ψm(x,y,z,t), m=1,4 as a solution to the time dependent Dirac equations. Once having Ψm(x,y,z,t), it can be used to compute the probability ... Read More
Valves are widely used to control fluid flow in various engineering applications. It’s crucial to study the flow characteristics inside the valve and the fluid-structure interaction between the fluid and valve’s sleeve for design, optimization and improvement of valves. However, because ... Read More
Transport Phenomena in Chemical Engineering involves three key aspects: Momentum, Heat and Mass Transport. These areas are described by differential equations which are solved for a particular problem using independent or a set of combined equations (e.g., water flowing in a heated ... Read More
The paper illustrates the use of the COMSOL Multiphysics® software (via the “Coefficient-Form PDE” option) for obtaining the relativistic quantum mechanics wave function ψm(x,y,ω), m=1,4 as a solution to the time independent Dirac equations. Once having ψm(x,y,ω), it can be used to ... Read More
The modelling of a ferrite material is conventionally carried out using the Polder permeability tensor which assumes that the ferrite is saturated by a uniform magnetic field. This assumption is often inaccurate due to the constraints imposed by boundary conditions which renders the ... Read More
Engineering design has long been dominated by orthogonal Cartesian principles. Nature inspired equation based mathematical surfaces are under renewed interest due to their innovative design potential and practical viability by 3D printing. In this paper, the parametric surface ... Read More
In this paper, all optical microring resonator based on Lithium Niobate on Insulator (LNOI) has been proposed. LNOI has high refractive index contrast and also show better electro-optic & acousto-optic effects. The optical ring resonator resonates when the optical path-length of the ... Read More
The US Food and Drug Administration (FDA) faces significant challenges in its regulatory approval processes due to a lack of relevant science, and many practices are limited by laws enacted in the previous century [1]. Therefore, in recent years, the FDA has identified the need for ... Read More