The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Vector Hysteresis Modeling

This tutorial is a benchmark model that reproduces the Testing Electromagnetic Analysis Method (TEAM) Problem 32, which evaluates numerical methods for the simulation of anisotropic magnetic hysteresis. A hysteretic three-limbed laminated iron core is subject to a time-varying magnetic field generated by two coils. The Jiles-Atherton material model (available in the *Magnetic Fields* interface) ...

Eddy Currents in a Cylinder

The eddy currents in a conductive cylinder, generated from currents passing through a surrounding coil, are studied. The skin effect in the coil is also studied.

Generator Models in 2D and 3D

These models demonstrate how to setup a sector model of rotating machinery both in 2D and 3D using *Rotating Machinery, Magnetic* interface in COMSOL Multiphysics. The stator in these permanent magnet ac generator examples consists of stator winding backed by iron core. The rotor includes the permanent magnets and iron core. The 2D and 3D model of the generator are included here. In 2D, the ...

Computing the Resistance of a Wire

Every electrical device has some resistance. That is, when a voltage difference is applied across any two terminals of the device, there will be a directly proportional current flow. This model demonstrates how to compute the resistance of a short section of copper wire. The convergence of the solution with respect to the mesh size is also studied.

Electromagnetic Forces on Parallel Current-Carrying Wires

This model shows a setup of two parallel wires with a constant current running through both. Their cross-sections are successively reduced until a set force per unit length is reached.

Induction Heating of a Steel Billet

Induction heating is a method used to heat metals for forging and other applications. Compared with more traditional heating methods, such as gas or electric furnaces, induction heating delivers heating power directly to the piece in a more controlled way and allows for a faster processing time. The Induction Heating of a Steel Billet application can be used to design a simple induction heating ...

One-Sided Magnet and Plate

Permanent magnets with a one-sided flux have many uses. The one-sided flux behavior is obtained by giving the magnet a magnetization that varies in the lateral direction. This model shows this technique to model a cylindrical one-sided permanent magnet. A special technique to model thin sheets of high permeability material was used to model a thin metal plate next to the magnet. This ...

Rotating Machinery 3D Tutorial

This is a tutorial how to set up electric machinery in 3D using a combination of the magnetic fields and magnetic fields no currents interfaces.

Modeling a Spiral Inductor Coil

Spiral inductor coils are attractive because they can be integrated easily while electroplating other printed circuits and provide robust inductance values. Models of such spiral inductors can become quite large as the number of turns increases. This example demonstrates how to exploit the near-symmetry of the structure to greatly reduce the model size. An eight-turn octagonal spiral coil is ...

Inductor in an Amplifier Circuit

This model shows how to combine an electric circuit simulation with a finite element simulation. The finite element model is an inductor with a nonlinear magnetic core and 1000 turns, where the number of turns is modeled using a distributed current technique. The circuit is imported into COMSOL Multiphysics as a SPICE netlist, which merges the inductor model and the circuit elements as ODEs.